
An introduction to derived functors

Jack Ceroni∗

(Dated: Sunday 31st August, 2025)

I. Introduction

The goal of these notes is to explain the general construction of derived functors. In subsequent notes, I will

explain the theory of derived categories, but these notes will be wholly focused on the more basic theory of

derived functors. These notes will be highly encyclopedic: we will cover a lot of expository theory to build up

to our main results, some of which is a bit boring, but I’m hoping that this will serve as a detailed reference for

myself and others.

These notes draw on a number of references, the most notable being:

• An Introduction to Homological Algebra by Weibel

• Categories for the Working Mathematician by Mac Lane

• Hodge Theory and Complex Algebraic Geometry I by Voisin

• Jacob Tsimerman’s lecture notes on etale cohomology

II. Category theory basics

In this section, I’ll go over a few basic ideas in category theory.

Definition II.1 (Initial and final objects). Let C be a category, an object I in C is said to be initial if for any

other object X, there is a unique morphism I → X. An object T is terminal if for any X, there is a unique

morphism X → T . An object is said to be a zero object (denoted 0) if it is both initial and terminal.

Remark II.1. It is easy to see that initial and final objects (if they exists) are unique up to unique isomorphism.

Definition II.2 (Comma category). Let F : C → D be a functor, let X be an object of D. The comma category

(X ↓ F ) is defined as follows:

• The objects are pairs (C, f : x→ F (C)) for objects C ∈ Obj(C).

• The morphisms between (C, f) and (C ′, f ′ : X → F (C ′)) are morphisms h : C → C ′ in C such that

F (h) ◦ f = f ′.

It is very easy to verify that we have defined a valid category. We can also define another type of comma

category, (F ↓ X), where we look at objects of the form (C, f : F (C) → x), and define the morphisms in the

obvious way.

Example II.1. The category of pointed topological spaces is precisely (· ↓ Top).

Definition II.3 (Universal morphism). A universal morphism is an initial object in (X ↓ F ), a particular

comma category, or a terminal object in (F ↓ X). Intuitively, a universal morphism encodes a property which

characterizes some object up to isomorphism. We can unravel the definition of a universal morphism to better

∗ jceroni@uchicago.edu

mailto:jceroni@uchicago.edu


2

conceptualize it. In particular, a universal morphism (in (X ↓ F )) is a pair (C, f : X → F (C)) such that for any

other pair (C ′, f ′ : X → F (C ′)), there is a unique arrow h : C → C ′ such that the following diagram commutes:

X F (C)

F (C ′)

f

f ′ F (h)

Corollary II.0.1. A universal morphism is unique up to unique isomorphism in the comma category: this

follows immediately from the fact that initial and terminal objects are unique up to unique isomorphism.

Example II.2 (Tensor algebra). The tensor algebra of a vector space is a great example of an object characterized

via a universal property. In particular, given some vector space V over k, the property which characterizes the

tensor algebra T (V ) is that any linear map V → A of V to a k -algebra extends uniquely to an algebra

homomorphism from T (V ) to A. Let For : Algk → Vectk be the forgetful functor which sends a k -algebra to

its underlying vector space. We take F to be For, and we take X = V . Our desired object is an initial object

(T (V ), f : V → For(T (V ))) in the comma category, which is to say that for any A ∈ Algk and linear map

f ′ : V → For(A), there must be a unique algebra homomorphism g : T (V ) → A such that For(g) ◦ f = f ′.

Remark II.2. A word of caution: this formulation of a universal morphism can fail to nicely capture many

instances where a ”universal property” may describe a particular object. A good example is the tensor product.

Technically, one can formulate a definition of the tensor product of two vector spaces, V ⊗W , via the language

of universal morphisms (see nLab), but in practice, it is better to just say that V ⊗W is an object of Vectk and

a bilinear map j : V ×W → V ⊗W such that for any bilinear map f : V ×W → Z, there is a unique morphism

h : V ⊗W → Z such that h ◦ j = f . The reason why we cannot use a universal morphism naively in this case is

because of the bilinear attribute of the maps j and f (we can’t specify this particular attribute as native to the

category in which we are working because we also need to work with the standard linear map h). Nevertheless, it

is easy to check directly that this definition uniquely characterizes V ⊗W (if it exists) up to unique isomorphism.

Having introduced universal properties, we can look at a related idea: adjoint functors.

Mantra II.1. The best, succinct way to think of a functor F : D → C adjoint to functor G : C → D is that F is

the most efficient way to systematically “solve the problem” posed by G. If G is, for example, a forgetful functor

which throws away some of the structure of category C, is there a method which reconstructs an element of C
from D, and imposes the minimal amount of extra structure possible? If such a method exists, and is functorial,

in the sense that it works the same for any object, then it can be described via a functor F : D → C which is

adjoint to G.

Mantra II.2. Another way to internalize this same intuition is via universal properties. When we find an object

which satisfies a universal property, we are effectively finding the “most efficient” object which satisfies some

desired property. An adjoint functor is a technique to define such universal objects at a global, categorical level,

rather than locally. To be more specific, writing down a universal morphism is dependent on a particular choice

of object X relative to which we define a comma category. One way to interpret the utility of an adjoint functor

is that it ”chooses every X at once” in a functorial manner. In the previous tensor algebra example, we are

choosing a particular X = V , and defining T (V ) via a universal property. In fact, T should be a functor in its

own right, and it should work for every choice of V is a functorial manner. Indeed, it is the case that T is a

functor adjoint to For.

Definition II.4. A functor F : D → C is said to be left-adjoint if for each X ∈ Obj(C), there exists a universal

morphism in (F ↓ X). The existence of a universal morphism simply means that there is some (G(X), fX :

F (G(X)) → X) such that for any other (C, g : F (C) → X), there is a unique morphism h : C → G(X)

where fX ◦ F (h) = g. From here, it is possible to show that we can define a functor G : C → D such that

fX ◦ F (G(h)) = h ◦ fX′ for all h : X ′ → X, as one might expect/hope. In particular, we simply let G take

https://ncatlab.org/nlab/show/tensor+product


3

object X to G(X). Additionally, given arrow h : X ′ → X in C, we obtain objects (G(X), fX : F (G(X)) → X)

and (G(X ′), h ◦ fX′ : F (G(X ′)) → X). We then obtain unique morphism G(h) : G(X ′) → G(X) where

fX ◦ F (G(h)) = h ◦ fX′ , as desired. To prove that this mapping of objects/arrows in a valid functor, we simply

note that G takes identity arrows to identity arrows and preserves compositions due to uniqueness of G(h).

There is a similar, dual construction, where we say that G : C → D is /right-adjoint/ if for each X ∈ Obj(D),

there exists a universal morphism in (X ↓ G). We define functor F : D → C analogously.

Claim II.1. If F : D → C is left-adjoint, and G : C → D is the corresponding induced functor, then G is

right-adjoint, and the corresponding induced functor is F . Similarly, if G : C → D is right-adjoint and F is the

induced functor, then F is left-adjoint, and its induced functor is G.

Proof. Let’s look at the first case. We need to show that for each X in D, then there is initial object (F (X), fX :

X → G(F (X))) in the comma category. Thus, we need to produce a unique arrow g : F (X) → Y for some

(Y, h : X → G(Y )) such that G(g) ◦ fX = h. Of course, we know that F is left-adjoint with induced functor G,

so we can find universal morphism in (F ↓ Y ). This will be some terminal (G(Y ), gY : F (G(Y )) → Y ). So, given

(Z, p : F (Z) → Y ), we have unique p′ : Z → G(Y ) such that gY ◦F (p′) = p. In particular, we can set Y = F (X)

and Z = X with p = id, to get p′ : X → G(F (X)) where gF (X) ◦ F (p′) = id. In addition, recall that gY satisfies

the naturality condition:

gY ◦ (F ◦G)(p) = p ◦ gY ′ (1)

for every p : Y ′ → Y . We claim that we can set fX = p′. Then, given (Y, h : X → G(Y )), consider gY ◦F (h): we
claim that this is the g we need. Then we have arrow G(g) ◦ fX = G(gY ) ◦ G(F (h)) ◦ p′, and applying F gives

us (F ◦G)(gY ) ◦ (F ◦G)(F (h)) ◦ F (p′). From the naturality condition,

gY ◦ F (h) ◦ gF (X) = gY ◦ g(F◦G)(Y ) ◦ (F ◦G)(F (h)) = gY ◦ (F ◦G)(gY ) ◦ (F ◦G)(F (h)) (2)

where the final equality comes from the naturality condition for p = gY . It follows that

gY ◦F (G(gY ◦F (h)) ◦ p′) = gY ◦ (F ◦G)(gY ) ◦ (F ◦G)(F (h)) ◦F (p′) = gY ◦F (h) ◦ gF (X) ◦F (p′) = gY ◦F (h) (3)

and by uniqueness, h = G(gY ◦ F (h)) ◦ p′, or in other words, G(g) ◦ fX = h, as desired. Thus, G is right-adjoint

with induced functor F . Proving the second case is follows more or less the same process, so we will omit the

proof.

Example II.3. The forgetful functor For : Algk → Vectk of Example 2.2 is right-adjoint (if the tensor algebra

T (V ) exists). In particular, we have initial (T (V ), f : V → For(T (V ))) for each V ∈ Obj(Vectk), which is a

universal morphism in (V ↓ For).

Now, let us discuss the notion of limits and colimits, which will prove to be useful in our discussion of Abelian

categories. Similar to universal morphisms and adjoints, we can think of limits and colimits as particular

initial/terminal objects in a category.

Definition II.5 (Diagram). A D-shaped diagram in C is a functor F : D → C. We can form a category of

D-shaped diagrams in C, D[C], by taking these functors are objects, and natural transformations as arrows.

Definition II.6 (Cone). If F : D → C is a D-shaped diagram in C, and Y is an object in C, we define a cone

from Y to F to be a collection of morphisms ψX : Y → F (X) for each object X in C, such that the following

diagrams commute:

Y

F (X) F (X ′)

ψX ψX′

F (f)



4

for each arrow f : X → X ′ in D. Similarly, we define a cone from F to Y (also called a co-cone) by reversing

all arrows in the above diagram. One can also formulate cones in terms of an appropriate comma category, if

they wish. The category of cones to F takes cones from some object to F as objects, and as morphisms, arrows

g : Y ′ → Y in C making the following diagrams commute:

Y ′

Y

F (X) F (X ′)

g

ϕX ϕX′

ψX ψX′

F (f)

with the category of co-cones (or cones from F ) being defined by again reversing the arrows in the above diagram.

Checking that these are categories is easy.

Definition II.7. If F : D → C is a diagram, a limit limF is an initial object in the category of cones going

to F . Similarly, a colimit colim F is a final object in the category of cones going from F . For a more detailed

explanation of limits and colimits, and how they are categorical generalizations of inverse limits and direct limits,

see my previous blog post.

Using limits and colimits, we are able to define an equalizer within a category, which can be thought of as a

categorical generalization of ”the set of arguments where two functions agree”.

Definition II.8. Let C be a category, let X and Y be objects, and let f, g : X → Y be arrows. Taking X

and Y as objects, f , g, and the identity arrows as morphisms, we form a subcategory, and if we let D = {1, 2}
with arrows a and b pointing from 1 to 2 (along with identity arrows), we easily can form a diagram F : D → C
sending a to f and b to g. The equalizer Eq(f, g) is limF . Unpacking this definition, the equalizer is an object

C ∈ C and maps ψX : C → X and ψY : C → Y such that g ◦ ψX = ψY = f ◦ ψX which satisfy the required

universal property. Similarly, the coequalizer Coeq(f, g) is colim F .

Remark II.3. One can immediately see how this generalizes the notion of ”the set on which two functions are

equal”. Being sloppy and abusing notation, we can have C = {(x, y) | y = f(x) = g(x)}, ψX the projection onto

the first argument, and ψY projection onto the second: then C satisfies the desired criterion. Ignore this remark

if you find it too hand-wavy.

To conclude, let us briefly introduce the notion of products and coproducts, which are another crucial component

of Abelian categories.

Definition II.9 (Products and coproducts). Let C and D be categories, where D is an “index set” (i.e. it has

no non-identity morphisms), and consists of set of objects I. Suppose F : D → C is a diagram, which simply

amounts to choosing some indexed family (Xi)i∈I of objects Xi in C. Then a product of the Xi is a limit of F .

Unrolling this definition, it is object C in C, along with morphisms πi : C → Xi (projections) which is initial in

the cone category. Similarly, a coproduct is a colimit of F .

III. Abelian categories

Here, we will develop some central results revolving around Abelian categories, which were introduced by

Grothendieck in his Tohoku paper, and provide the arena in which it makes sense to talk about exact sequences,

homology, and cohomology is a general, categorical sense.

We need to begin with a lot of definitions (basically a collection of categorical generalizations of things which

come up frequently in algebra).

https://lucaman99.github.io/mathblog/groupoid_svk.html


5

Definition III.1 (Preadditive category). A preadditive category C is a category such that each hom-set has the

structure of an Abelian group, with composition being bilinear over the group addition:

f ◦ (g + h) = (f ◦ g) + (f ◦ h) and (g + h) ◦ f = (g ◦ f) + (h ◦ f). (4)

Definition III.2 (Zero morphisms). Let C be a category, an arrow f : X → Y is said to be constant if for

any morphisms g, h : W → X, we have f ◦ g = f ◦ h. An arrow is said to be coconstant if for any morphisms

g, h : Y → Z, we have g◦f = h◦f . A morphism which is both constant and coconstant is called a zero morphism.

We say that C is a category with zero morphisms such that for every two objects X and Y , there is a morphism

0XY : X → Y such that for any two arrows f : X → Y and g : Y → Z, the following diagrams commute:

X Y

Y Z

0XY

f 0XZ
g

0Y Z

Remark III.1. Note that if C is a category with zero morphisms, then the arrows 0XY are unique. To see this,

let Z = Y , let g = id, let f = 0′XY : some other morphism satisfying the same criteria as 0XY . Then applying

the diagram, we find that 0XY = 0Y Y ◦ 0′XY and 0′XY = 0Y Y ◦ 0′XY , so 0XY = 0′XY . We can also check that all

of the 0XY are zero morphisms. We have 0XY = 0Y Z ◦ f for any arrow f : X → Y and we have g ◦ 0XY = 0XZ
for any arrow g : Y → Z: this immediately gives us what we want.

Claim III.1. If C is an object with zero object 0, then C has zero morphisms. In particular, we have natural

maps tX : X → 0 and iY : 0 → Y , and 0XY = iY ◦ tX endow C with the structure of a category with zero

morphisms.

Proof. Let f : X → Y and g : Y → Z be arrows. We note that 0Y Z ◦f = iZ ◦ (tY ◦f) and g ◦0XY = (g ◦ iY )◦ tX .

Of course, tY ◦ f : X → 0 must be equal to tX and g ◦ iY must be iZ , so both compositions are equal to 0XZ , as

desired.

Remark III.2. One can easily see that in a preaddditive category C, the zero objects in each hom-set give C
the structure of a category with zero morphisms. In particular, if we have g : Y → Z and 0XY : X → Y the zero

object in Hom(X,Y ), then

g ◦ 0XY = g ◦ (0XY + 0XY ) = g ◦ 0XY + g ◦ 0XY (5)

which implies that g◦0XY = 0XZ . Similarly, 0Y Z◦f = 0XZ for some f : X → Y . Thus, the required commutative

diagram is satisfied.

Using the concept of zero morphisms, and the previously introduced concept of equalizers (and coequalizers), we

are able to write down a natural definition of the kernel (and cokernel). Note that kernels and cokernels will not

always exist in a given category (as a given category may not contain certain equalizers/coequalizers). Before

looking at kernels and cokernels, let us define a few more foundational concepts.

Definition III.3. A morphism f : X → Y is said to be monic if f ◦ g = f ◦ h implies g = h for any arrows g

and h. A morphism is said to be epi if g ◦ f = h ◦ f implies g = h for any g and h.

Often times, when we transition from concrete algebraic language to practices which are “categorical” or “func-

torial”, we prefer to deal with arrows between objects rather than objects themselves. Subobjects and quotient

objects are one way in which this philosophy first appears.

Definition III.4 (Subobjects and quotient objects). Let C be an arbitrary category. Let f : X → C and

f ′ : Y → C be two monics with common target. We say that f ≤ f ′ if f factors through f ′: there exists arrow

ϕ such that f = f ′ ◦ ϕ. Clearly, this relation is transitive and reflexive. We say that f ∼ f ′ if f ≤ f ′ and f ′ ≤ f ,



6

which then clearly yields an equivalence relation among monics targeting C. An equivalence class of this form is

called a subobject of C.

Similarly, given two epis g : C → X and g′ : C → X ′, we say that g ≥ g′ if there is arrow ϕ such that g′ = ϕ◦g.
This defines an equivalence relation between epis with a common domain, and we call an equivalence class of

this form a quotient object of C.

Definition III.5 (Kernel). Given arrow f : X → Y in category C with zero morphisms, we define a kernel

of f as some Eq(f, 0XY ), an equalizer of f and 0XY . Unrolling this definition, a kernel of f is an object K

and morphism k : K → X such that f ◦ k = 0XY and such that if k′ : K ′ → X is another arrow such that

f ◦ k′ = 0XY , there exists a unique arrow φ : K ′ → K such that k ◦ φ = k′.

Now, let us explain something subtle: above, we have said that a kernel is an equalizer, so it it isn’t necessarily

unique, but any two kernels are isomorphic via unique isomorphism (as we know equalizers are). In particular, if

k and k′ are two kernels, then the isomorphism φ : K ′ → K will satisfy k′ = k ◦φ and k = k′ ◦φ−1. It is also very

easy to verify that a kernel is always a monic. Thus, k ∼ k′ with respect to the equivalence relation of Def. III.4.

It follows that all kernels of f define the same subobject of X. Moreover, if k is a kernel and j : J → X is such

that j ∼ k, so k = j ◦ ϕ and j = k ◦ψ, it is clear that f ◦ j = f ◦ k ◦ψ = 0 and if k′ : K ′ → X satisfies f ◦ k′ = 0,

then ϕ◦φ : K ′ → J is a unique arrow such that k′ = j ◦ϕ◦φ (where φ is the unique arrow from K ′ to K). Thus,

j is also a kernel, so in conclusion: the collection of all kernels of f is equal to the subobject of X determined by

a single kernel of f . We will denote this subobject ker(f), and refer to it as the kernel subobject of f .

Definition III.6 (Cokernel). In addition, the dual concept, a cokernel of f : X → Y , is taken to be some

Coeq(f, 0XY ): a coequalizer of f and 0XY . Unrolling this definition: it is a map q : Y → Q such that q ◦ f = 0,

and such that if q′ : Y → Q′, there is unique ϕ : Q′ → Q such that ϕ ◦ q′ = q. Similar to the case of kernels, one

can show that any cokernel is epi, and that the quotient object defined by a single cokernel of f is precisely the

collection of all cokernels of f . We call this quotient object the cokernel quotient object of f , and denote is by

coker(f)

Lemma III.1. Suppose f = m◦e where m is monic and e is epi. Then ker(f) = ker(e) and coker(f) = coker(m)

(as subobjects and quotient objects)

Proof. Let kf : Kf → X be a kernel of f , let ke : Ke → X be a kernel of e. Note that 0 = f ◦ kf = m ◦ e ◦ kf ,
so e ◦ kf = 0 as m is monic. Thus, we have kf = ke ◦ ϕ for some ϕ, by definition of the kernel. Similarly,

f ◦ke = m ◦ e ◦ke = 0, so ke = kf ◦ψ for some ψ, so ke ∼ kf . A nearly identical, “dual proof” shows the equality

of cokernel quotient objects.

Definition III.7 (Image). Using the concept of kernels/cokernels, we are able to define the image of an arrow

f : X → Y as well. In particular, if the cokernel quotient object coker(f) exists (it is non-empty, as a set), then

we have object Q and “quotient” morphism q : Y → Q. Intuitively, if Q is supposed to generalize Y/im(f) in

the case that we are operating in, say, the category of vector spaces, then we should have ker(q) ≃ im(f) (this

is just the first isomorphism theorem). Thus, we define im(f) = ker(q). Note that im(f) is well-defined as a

subobject, as any other q′ in coker(f) is given by q′ = ψ ◦ q for some isomorphism ψ, and from the previous

lemma, Ker(q′) = Ker(q).

Definition III.8 (Biproducts). Let C be a category with zero morphisms. Let X1, . . . , Xn be a collection of

objects in C, a biproduct of these objects is an object X1 ⊕ · · · ⊕Xn and morphisms pk : X1 ⊕ · · · ⊕Xn → Xk

(projections) and ik : Xk → X1 ⊕ · · · ⊕Xn (embeddings) which satisfy:

• pk ◦ ik = 1k, the identity arrow on Xk

• pℓ ◦ ik = 0kℓ, the zero morphism from Xk to Xℓ.

In addition, we require that (X1 ⊕ · · · ⊕Xn, pk) is a product of the objects Xk and that (X1 ⊕ · · · ⊕Xn, ik) is

a coproduct.

Definition III.9. A monic is said to be normal if it is a kernel of some morphism. An epi is said to be conormal

if it is a cokernel of some morphism.



7

We can now (finally) define Abelian categories:

Definition III.10 (Abelian category). An Abelian category C is a preadditive category which satisfies the

following criteria:

• C has a zero object.

• C contains all binary biproducts (i.e. biproducts of two objects, thus biproducts of a finite number of

objects).

• C contains all kernels and cokernels. In addition, we have functors Ker,Coker : Arr(C) → Arr(C) (where

Arr(C) is the usual arrow category) such that:

– Ker(f) is a kernel if : Kf → X for each arrow f : X → Y in Obj(Arr(C)).
– Coker(f) is a cokernel qf : X → Qf for each arrow f : X → Y in Obj(Arr(C)).

• Every monic in C is normal, every epi is conormal.

Remark III.3. Note that going forward, when we speak of the kernel or the cokernel going forward, we are

generally referring to the functors above applied to a particular arrow. Notice the capital letters used to denote

the functors, which differ from the lowercase letters used to denote the kernel subobject and cokernel quotient

objects.

Remark III.4. Note that the existence of functors Ker and Coker is equivalent to simply being able to choose

a particular kernel and cokernel for each map in a particular category C. In a small category, this can be done

when we assume the axiom of choice, but in large categories, we may need a stronger “axiom of choice for proper

classes”.

To be more specific, suppose for each arrow f : X → Y in C, we pick some particular kernel, if : Kf → X

for f (arbitrarily), and we define Ker(f) to be if . To define a corresponding functor Ker from Arr(C) to itself,

we need to write down the action of Ker on arrows in the arrow category, which are commutative squares of the

form:

Xf Xg

Yf Yg

ϕX

f g

ϕY

determined by the maps ϕX and ϕY . Note that the arrow ϕX ◦ if : Kf → Xg satisfies

g ◦ ϕX ◦ if = ϕY ◦ f ◦ if = 0 (6)

which means that we have unique ϕ̃ : Kf → Kg making the appropriate kernel diagram commute. We then let

Ker(ϕ) be the commutative square determined by ϕ̃ and ϕX . We note that ig ◦ ϕ̃ = ϕX ◦ if , so this is a valid

commutative square. It is easy to see that Ker(id) = id and by uniqueness, that Ker(ϕ ◦ ψ) = Ker(ϕ) ◦Ker(ψ).

Therefore, we have defined a valid functor which assigns kernels to every arrow. A similar construction holds for

the cokernel (so similar that we omit the proof).

Operating in the realm of Abelian categories allows us to prove many, generic results, some of which are recog-

nizable from basic algebra.

Definition III.11. If C is an Abelian category, a sequence of morphisms indexed by integers · · · → Xj−1 →
Xj → Xj+1 → · · · is said to be a cochain complex if the composition of neighbouring arrows is the unique zero

morphism between the objects. A chain complex is exactly the dualized version of the chain complex that we

would expect.



8

Definition III.12 (Cohomology). We will focus here on the case of cohomology, rather than homology, as for

our purposes, it is more important. Let C be an Abelian category, consider a cochain complex

· · · X−1 X0 X1 X2 · · ·d−1 d0 d1

which we denote by X•, where we have dj+1 ◦ dj : Xj → Xj+2 equal to the zero morphism from Xj to Xj+2.

Consider Ker(dj), which we denote by ij : Kj → Xj . We then define uj via the universal property which ij and

Kj satisfy:

Xj−1

Kj

Xj Xj+1

uj

dj−1 0

ij 0

dj

One should think of this arrow as restricting the target of dj−1 to the kernel Kj , as due to the fact that dj ◦dj−1

is the zero morphism, it makes sense to do this. From here, we take Hj(X•) = Coker(uj): this is the j -th

cohomology of X•. Informally, one can think of this as ”the kernel of dj modulo the image of dj−1”, which is

the standard definition of cohomology when working with Abelian groups.

In addition, if we have a collection of morphisms between terms of cochain complexesX• and Y •, f j : Xj → Y j ,

· · · Xj−1 Xj Xj+1 · · ·

· · · Y j−1 Y j Y j+1 · · ·

dj−1
X

fj−1

djX

fj fj+1

dj−1
Y djY

we are able to define Hj(f•) : Hj(X•) → Hj(Y •) as follows. We first define map from Kj
X to QjY , where Q

j
Y

is the object of Hj(Y •). Of course, we have f j : Xj → Y j , and we have inclusion ijX : Kj
X → Xj , so we have

arrow f j ◦ ijX . We then obtain unique map f̃ : Kj
X → Kj

Y given by

Kj
X

Kj
Y

Y j Y j+1

f̃

fj◦ijX 0

ijY
0

djY

where we are using the fact that

djY ◦ f j ◦ ijX = f j+1 ◦ dj+1
X ◦ ijX = 0 (7)

From here, we can post-compose with the quotient qjY : Kj
Y → QjY to get the desired map from Kj

X to Hj(Y •).

To finally promote this to a map from QjX : the object of Hj(X•), we need to show that f̃ ◦ ujX = ujY ◦ f j−1. We

have

ijY ◦ f̃ ◦ ujX = f j ◦ ijX ◦ ujX = f j ◦ dj−1
X (8)

and

ijY ◦ ujY ◦ f j−1 = dj−1
Y ◦ f j−1 = f j ◦ dj−1

X (9)



9

Since ijY is monic, we then have the desaired equality. We then have the following, final diagram for the cokernel

QjY

QjX

Xj−1 Kj
X

0

0

uj
X

qjY ◦f̃

qjX

where we use the fact that

qjY ◦ f̃ ◦ ujX = qjY ◦ ujY ◦ f j−1 = 0 (10)

It follows that the dashed arrow is uniquely defined: this is precisely the map Hj(f•). With that, we are finally

done describing the cohomology of a cochain complex within an Abelian category, and the associated morphisms.

Claim III.2. If f and g are morphisms of cochain complexes, then it is easy to see that we can define a composite

cochain morphism, (f ◦ g)•, where (f ◦ g)k = fk ◦ gk. In this case,

Hj((f ◦ g)•) = Hj(f•) ◦Hj(g•) (11)

Proof. Let h = f ◦ g, where g : X → Y and f : Y → Z are morphisms of cochain complexes. To do this proof,

we are going to use a very nice technique called a “diagram chase via generalized elements”. For an explanation

of the machinery involved in this proof, see Appx. ??. We will assume familiarity with the notation and main

results developed in this section going forward.

Using the same notation as in the definition of cohomology, since qjX is epi, any [y] ∈ QjX can be written as

qjX([x]) for some [x] ∈ Kj
X We then note that

(Hj(h•)−Hj(f•) ◦Hj(g•))(qjX([x])) = (qjZ ◦ (h̃− f̃ ◦ g̃))([x]) (12)

From here, note that we have

(ijZ ◦ (h̃− f̃ ◦ g̃))([x]) = ((hj − f j ◦ gj) ◦ ijX)([x]) = [0] (13)

and since ijZ is monic, (h̃− f̃ ◦ g̃)([x]) = [0], and therefore, Eq. (12) is [0] as well, so Hj(h•)−Hj(f•) ◦Hj(g•)

must be the zero arrow, which gives us the desired equality.

Let’s prove a useful result related to exact sequences in Abelian categories:

Lemma III.2. If C is an Abelian category, with arrows f : X → Y and g : Y → Z such that Im(f) ≃ Ker(g),

then Im(g) ≃ Coker(f).

Proof. This amounts to showing that Coker(f) ≃ Coker(ig), where ig : Ker(g) → Y is the defining map of Ker(g).

We know that Im(f) ≃ Ker(g), so we let qf : Y → Coker(f) be the defining map for Coker(f), and then let

iqf : Ker(qf ) → X be the defining map for Ker(qf ). Let Φ : Ker(qf ) → Ker(g) be an isomorphism (which we

know exists). We define maps ϕ and ψ via the universal properties of kernels of cokernels:

Ker(qf ) Ker(g)

X Y Z

Coker(f) Coker(ig)

Φ

iqf igϕ

f

0

g

qf qig

0

ψ



10

In particular, ϕ and ψ are the unique arrows making the following diagrams commute:

X Z

Ker(qf ) Coker(ig)

Y Coker(f) Ker(g) Y

ϕ

f 0

iqf
0

ψ

qf

0

0

ig

g

qig

Note that

qig ◦ f = qig ◦ iqf ◦ ϕ = qig ◦ ig ◦ Φ ◦ ϕ = 0 (14)

and

qf ◦ ig = qf ◦ iqf ◦ Φ−1 = 0 (15)

We can then fill in the dashed lines by again exploiting universal properties:

Coker(ig) Coker(f)

Coker(f) Coker(ig)

X Y Ker(g) Y

µ ν

0

0

f

qig

qf

0

0

ig

qf

qig

and it follows by uniqueness of µ and ν that they must be inverse of each other. For example, the diagram

Coker(f)

Coker(ig)

Coker(f)

• •

ν

µ0

0

0

f

qf

qig

qf

commutes, which implies that ν ◦ µ = id, with a similar diagram showing that µ ◦ ν = id as well. Thus, we have

defined an isomorphism of Coker(f) and Coker(ig) = Im(g), as desired. Since all of the maps involved

Definition III.13. We say that the sequence of morphisms in Abelian category C,

0 X Y Z 0
f g

is short exact if f is a monic, g is an epi, and Im(f) ≃ Ker(g).

Lemma III.3 (Splitting lemma). Consider a short exact sequence in Abelian category C of the above form.

Then the following statements are equivalent:

1. There exists a morphism t : Y → X such that t ◦ f = 1X , the identity on X.

2. There exists a morphism u : Z → Y such that g ◦ u = 1Z , the identity on Z.

3. There is an isomorphism h : Y → X ⊕ Z, where X ⊕ Z is a biproduct of X and Z where h ◦ f = iX and

g ◦ h−1 = pZ .

For the sake of moving on to more interesting things in a reasonable timeframe, I will omit this (I assume very

standard) proof for now. Let’s prove one more result:



11

IV. Derived functors

Now that we’ve cleared up the preliminaries, let us dive into the theory of derived functors. We will follow some

nice lecture notes prepared by Jacob Tsimerman for a course on etale cohomology, filling in details. Let:

0 X Y Z 0
f g

be a short exact sequence in Abelian category C. We then say that an additive functor between Abelian categories

F : C → D (F is a group homomorphism from Hom(X,Y ) to Hom(F (X), F (Y ))) is exact if, for any short exact

sequence of the above form, then

0 F (X) F (Y ) F (Z) 0
F (f) F (g)

is also a short exact sequence. It is called left-exact (resp. right-exact) under the weaker condition that we no

longer require F (g) (resp. F (f)) to be an epimorphism (resp. monomorphism).

Remark IV.1. Note that F : C → C′ which are left-exact preserve finite limits. To be more precise, if G : D → C
is a diagram, where the set of objects and morphisms of D are finite sets, then F being left-exact is equivalent

to F (limG) (for some limit limG of G) being isomorphic to limF ◦G, some limit of F ◦G.

Corollary IV.0.1. If F is a left-exact functor between Abelian categories, then F applied to the kernel of arrow

f : A→ B is isomorphic to the kernel of F (f) : F (A) → F (B).

Proof. Note that the kernel is an equalizer Eq(f, 0AB), which is a finite limit of the diagram consisting of A and

B with arrows f and 0AB . Since F is left-exact, this is the same as the limit of the diagram consisting of F (A)

and F (B) with arrows F (f) and F (0AB) = 0F (A)F (B) (from additivity of F ). Therefore, our limit is indeed some

equalizer Eq(F (f), 0F (A)F (B)), which is isomorphic to the kernel KerF (f), as desired.

Corollary IV.0.2. A left-exact functor preserves zero objects in an Abelian category.

Proof. The kernel of a zero morphism is always a zero object, so a kernel of the zero morphism 0 from some zero

object 0 to itself is 0 ∈ C, so F (0) is equal to a kernel of the zero morphism F (0) from F (0) to itself, which is a

zero object 0 ∈ D.

Let K be the kernel of f , let i : K → A be the inclusion, so that f ◦ i = 0KB . We have the short exact sequence

0 → K → A→ Q→ 0 where Q is the cokernel of f . Thus, 0 → F (K) → F (A) → F (Q) is exact, so in particular,

F (i) is a monomorphism and the image of F (K) → F (A) is isomorphic to the kernel of F (A) → F (Q). The main

idea of a derived functor is to take a left-exact functor F , and product a corresponding family of maps (RiF for

i ≥ 0, where R0F = F ) which fit into a long exact sequence. This sequence can be thought of as a ”higher-order

artifact” which quantifies the failure of a left-exact functor to be exact, which is a stronger condition.

Suppose we did have such maps RiF , which take objects as arguments (I’m being careful not to call theses

things functors, because in these notes, they will not be considered as such) where:

0 → F (X) → F (Y ) → F (Z) → R1F (X) → R1F (Y ) → R1F (Z) → R2F (X) → · · · (16)

Let us try to deduce some necessary properties.

Definition IV.1. If C is a category, we say that object I ∈ C is injective if for every monic f : X → Y and

morphism g : X → I, there exists morphism h : Y → I extending g (i.e. h ◦ f = g). We say that C has enough

injectives if for every object X in C, there is a monic X → I from X into some injective object.

Suppose I is injective in Abelian category C and suppose we have short exact sequence 0 → I → X → Y → 0

(with arrows f and g). The fact that I is injective means that there must be h such that h ◦ f = idI , so f has a

https://www.math.toronto.edu/jacobt/Lecture12.pdf


12

left-inverse, which means (via the splitting lemma) that X ≃ I ⊕ Y (the biproduct of I and Y ) via the arrow k:

0 I X Y 0

I ⊕ Y

f

i

g

k
p

We want to show that F (g) is an epi. We have the inclusion and projection to and from the biproduct, Y →
I ⊕ Y → Y , which compose to give the identity. It follows that F (p ◦ j) = F (p) ◦ F (j) = id, so F (p) has

a right-inverse, which automatically implies it is an epi. Hence, F (g) is as well, as F (k) is an isomorphism.

Therefore, the left-exact functor actually takes the short exact sequence to a true, exact sequence. This means

that we can extend the short exact sequence to a long exact sequence trivially: we just keep adding zeros. This

extension isn’t unique, we could have any sequence which looks like:

0 → F (I) → F (X) → F (Y ) → 0 → R1F (X) ≃ R1F (Y ) → 0 → R2F (X) ≃ R2F (Y ) → 0 → · · · (17)

and we would still have exactness. However, in any of these cases, we have RiF (I) = 0 for i ≥ 1 when I is an

injective object. This suggests to us that, perhaps, our RiF should kill all injective objects when i ≥ 1. As it

turns out, this intuition is correct, and will guide us towards the definition of RiF .

Suppose we are working in Abelian category C which has enough injectives. Given some object X, let us

pick some monic f : X → I. We then note that Y = Coker(f) is in C, so we have short exact sequence

0 → X → I → Y → 0. This follows from the fact that the quotient q : I → Y is an epi, and Im(f) ≃ Ker(q) by

definition.

From here, assume that we have RiF (I) = 0 for i ≥ 1. The associated long exact sequence (if it exists) will

look like

0 → F (X) → F (I) → F (Y ) → R1F (X) → 0 → R1F (Y ) → R2F (X) → 0 → · · · (18)

which means that R1F (X) is the image of F (Y ) → R1F (X), which is isomorphic to the cokernel of F (I) → F (Y )

(this is from Lem. III.2). In addition, we have Ri−1F (Y ) ≃ RiF (X) for i ≥ 2. This comes from the fact that

RiF (X) ≃ Ker(RiF (X) → 0) ≃ Im(Ri−1F (Y ) → RiF (X)) ≃ Coker(0 → Ri−1F (Y )) ≃ Ri−1F (Y ) (19)

where we are again using Lem. III.2, and the first and last isomorphisms are easy to check.

This means that we should be able to compute R2F (X), for example, by embedding Y in an injective J ,

g : Y → J , and then computing R1F (Y ) by computing the cokernel of F (J) → F (Z), where Z = Coker(g). We

can repeat this procedure recursively to get all higher RiF (X). Of course, to do this, we need the guarantee

that we can actually embed into injective objects in the first place: this is precisely the condition of our cat-

egory having “enough injectives”, which we introduced earlier. At this point, RiF (X) clearly depends on the

chosen embeddings into injective objects, but we will soon show that all such choices are isomorphic via unique

isomorphism.

Definition IV.2. Given object X, and injective resolution of X is an exact sequence 0 → X → I0 → I1 → · · ·
where each In is injective.

Lemma IV.1. In an Abelian category, injective resolutions always exist.

Proof. The way we do this is as follows. Start with X, pick injective embedding X → I0 using the “enough

injectives” property. From here, note that cokernel of this map exists: call it K0. We can then pick an injective

embedding K0 → I1. We continue on like this, inductively, and our sequence ends up looking like:

0 → X → I0 → K0 → I1 → K1 → I2 → K2 → · · · (20)



13

This gives a collection of short exact sequences, 0 → Kj → Ij+1 → Kj+1 → 0 (where we let K−1 = X), and our

corresponding injective resolution is formed by taking the Ik,

0 → X → I0 → I1 → I2 → · · · (21)

We still need to verify that this sequence is exact. Note that the coboundary map dj : Ij → Ij+1 is obtained

by composing ej : Ij → Kj followed by mj : Kj → Ij+1, where ej is the cokernel map of Kj−1 → Ij and

mj : Kj → Ij+1 is an injective embedding (which is monic). We then note from Lem. III.1, and the fact that

shorts exact sequences are exact:

im(dj) = im(mj ◦ ej) = im(mj) = ker(ej+1) = ker(mj+1 ◦ ej+1) = ker(dj+1) (22)

which means that Im(dj) ≃ Ker(dj+1), as desired.

Remark IV.2. If 0 → X → I0 → I1 → · · · is an injective resolution of X, we will often denote it by the

shorthand X → I.

Again, assume that the RiF exist, and satisfy the previous properties. Let X be an object and let X → I be

an injective resolution. Note that we can split this long exact sequence into short exact sequences 0 → Kj →
Ij+1 → Kj+1 → 0 by setting Kj = Ker(dj+1). We can then look at the corresponding long exact sequences

associated to mapping under RiF . In particular, as we discussed before, we should have

Ri−1F (Kj+1) ≃ RiF (Kj) (23)

which gives us the sequence of isomorphisms

RnF (X) = RnF (K−1) ≃ Rn−1F (K0) ≃ Rn−2F (K1) ≃ · · · ≃ R1F (Kn−2) (24)

We already saw that R1F (Kn−2) is isomorphic to the cokernel of the map F (In−1) → F (Kn−1). We want to

show that this cokernel is isomorphic to the n-th cohomology of the cochain complex F (X) → F (I0) → F (I1) →
F (I2) → · · · . In particular, since the injective resolution is exact, it follows that neighbouring arrows compose

to zero, and thus F applied to these arrows compose to zero, so this is a valid cochain complex in our Abelian

category. Recall that in order to compute cohomology, we look at Coker(uj), where uj is the (j−1)-th coboundary

with “target restricted to the kernel” of the next coboundary. So, we want to show that F (dj) : F (Ij) → F (Ij+1)

with target restricted and F (ej), with ej : Ij−1 → Im(dj−1), which is the target-restriction of dj−1 to Ker(dj),

mapped under F .

Remember that F is left-derived, and therefore preserves kernels: if i : K → A is a kernel of f : A → B, then

F (i) is a kernel of F (f). The map ej fits into a kernel diagram, which we map under F to get another diagram:

Ij−1 F (Ij−1)

Ker(dj) F (Ker(dj))

Ij Ij+1 F (Ij) F (Ij+1)

ej

dj−1 0

F (ej)

F (dj−1) 0

ij 0 F (ij) 0

dj F (dj)

From here, we know that F (ij) : F (Ker(dj)) → F (Ij) is a kernel of F (dj), so by uniqueness, F (ej) is precisely

uj , the (j − 1)-th coboundary F (dj−1) with target restricted. Thus, the cokernels are equal as desired.

To summarize, we have shown that RnF (X), under our fairly minimal assumptions, should be equal to the

n-th cohomology of F (X) → F (I0) → F (I1) → F (I2) → · · · . This is exactly how we will finally define the

right-derived functors of X.



14

Definition IV.3 (Right-derived functors of objects). If F is a left-exact functor between Abelian categories,

the right-derived functors RnF (X; I) of object X with respect to injective resolution X → I are defined to be

the cohomology groups of the cochain complex F (I0) → F (I1) → F (I2) → · · · . Note that as we have defined it,

RnF is not a functor. One can think of it is a true functor when we introduce the language of derived categories:

something that we will get to in a forthcoming collection of notes.

Remark IV.3. Note that if X• and Y • are cochain complexes, and we have arrows hj : Xj → Y j−1, then

f j = dj−1
Y ◦ hj + hj+1 ◦ djX going from Xj to Y j is a morphism of complexes, as

djY ◦ f j = djY ◦ dj−1
Y ◦ hj + djY ◦ hj+1 ◦ djX = (djY ◦ hj+1 + hj+2 ◦ dj+1

X ) ◦ djX = f j+1 ◦ djX (25)

Moreover, it is easy to check that H•(f•) = 0 (the unique morphism of cochain complexes which consists of zero

arrows in each degree). We say that maps of complexes g and g′ are cochain homotopy equivalent if g − g′ is a

map of the form of f above, for some h.

Lemma IV.2. Given objects X and Y , and injective resolutions X → I and Y → J , along with morphism

f̄ : X → Y , there exists a morphism of cochain complexes f : I → J which induces f̄ in the bottom degree, and

any two such lifts are cochain homotopy equivalent.

Proof. First, let us prove existence. We can compose f̄ : X → Y with map j : Y → J0, and then use the fact

that J0 is injective to extend to a map f0 : I0 → J0, as we have monic i : X → I0. Clearly, f0 ◦ i = j ◦ f̄ .
From here, we proceed by induction. We denote the maps in the two injective resolutions by dnI : In → In+1 and

dnJ : Jn → Jn+1. Assume that we have fk : Ik → Jk for k < n such that

dk−1
J ◦ fk−1 = fk ◦ dk−1

I (26)

where d−1
J = j and d−1

I = i. We have already proved the case of n = 1 (where f−1 = f̄). Assume we have proved

the case of n, we prove the case of n + 1. Given the map fn−1 : In−1 → Jn−1, we immediately have the map

dn−1
J ◦ fn−1 : In−1 → Jn. Note that

dn−1
J ◦ fn−1 ◦ dn−2

I = dn−1
J ◦ dn−2

I ◦ fn−2 = 0 (27)

which means that we have a unique map f̃ : Coker(dn−2
I ) → Jn which satisfies the usual cokernel diagram. Since

our complexes are exact, it follows from Lem. ?? that Coker(dn−2
I ) ≃ Im(dn−1

I ) via arrow Ψ, so we have a map

f̃ ◦Ψ : Im(dn−1
I ) → Jn. We of course have the monic inclusion j : Im(dn−1

I ) → In, so we use the fact that Jn is

injective to extend to a map fn : In → Jn. Note that we have

fn ◦ dn−1
I = fn ◦ j ◦ d′I = f̃ ◦Ψ ◦ d′I (28)

where d′I is dn−1
I with its target “restricted to Im(dn−1

I )”. We know that f̃ ◦ q = dn−1
J ◦ fn−1, where q : In−1 →

Coker(dn−2
I ) is the quotient defining the cokernel, so it is our goal to show that Ψ ◦ d′I = q. Indeed, if we go back

to the commutative diagram characterizing Ψ back in Lemma. ??, letting f = dn−2
I and g = dn−1

I , then we have:

Im(dn−2
I ) Ker(dn−1

I )

In−2 In−1 In

Coker(dn−2
I ) Im(dn−1

I )

dn−2
I dn−1

I

q d′I

Ψ

which immediately gives us the desired result. Thus, we have fn ◦ dn−1
I = dn−1

J ◦ fn−1, so by induction, we have

existence of our morphism.

To prove uniqueness, note that if f1 and f2 are two morphisms of the resolutions, I → J , then f = f1 − f2
is the zero-map in bottom degree, so we just need to prove that any morphism of complexes f which is zero in



15

bottom degree is of the form dk−1
J ◦ hk + hk+1 ◦ dkI in all degrees. To begin, note that we have f0 : I0 → J0. We

know that f0 ◦ i = 0 (f0 vanishes on the copy of A embedded in I0), which means that we get an induced map

f̃0:

J0

Coker(i)

A I0

f̃0

0

0

i

f0

q

We know that Coker(i) ≃ Im(d0I) from exactness via map Ψ, so we can extend f̃0 ◦ Ψ : Im(d0I) → J0 to a map

h1 : I1 → J0 from the fact that J0 is injective. This map will satisfy h1◦ι1 = f̃0◦Ψ, where ι1 : Im(d0I) → I1 is the

usual monic embedding. We then note that if we set h0 = 0, then we can show that f1 = d0J ◦h0+h1◦d0I = h1◦d0I .
In particular, similar to in the existence proof,

h1 ◦ d0I = h1 ◦ ι1 ◦ d′I = f̃0 ◦Ψ ◦ d′I = f̃0 ◦ q = f0 (29)

as desired.

Assume we have proved that for k < n, we have fk = dk−1
J ◦ hk + hk+1 ◦ dkI , for some collection of morphisms

hk. We note that

fn ◦ dn−1
I = dn−1

J ◦ fn−1 = dn−1
J ◦ hn ◦ dn−1

I (30)

so in particular, (fn − dn−1
J ◦ hn) ◦ dn−1

I = 0. Again, this means we get an induced map on the cokernel of dn−1
I

which in turn gives a map on Im(dnI ). Following the same procedure as the first step of this proof, we extend

the map induced from fn − dn−1
J ◦ hn to a map from In+1 to Jn, which we denote hn+1. It is then easy to show

that fn = dn−1
J ◦ hn + hn+1 ◦ dnI , again following a similar proof as the base case of the inductive proof.

Theorem IV.1. If X → I and X → J are two injective resolutions of X, then H•(F (I)) ≃ H•(F (J)), via a

natural isomorphism.

Proof. We have the identity map from X to itself, which we can lift to a morphism f : I → J . Note that if

f ′ : I → J were another lift, then f − f ′ = dJ ◦ h+ h ◦ dI , so

F (f)− F (f ′) = F (dJ) ◦ F (h) + F (h) ◦ F (dI) (31)

so F (f) and F (f ′) are cochain homotopy equivalent with respect to the cochain complexes F (X) → F (I) and

F (X) → F (J). Therefore, they will induce the same map in cohomology. We can additionally produce a

morphism g : J → I which lifts the identity (unique up to cochain homotopy equivalence), and by uniqueness,

f ◦ g and g ◦ f must be cochain homotopy equivalent to the identity, and therefore are inverses in cohomology,

so we have produced the desired isomorphism of cohomology.

Remark IV.4. In other words, for different choices of injective resolutions of object X, we have RiF (X; I) ≃
RiF (X; J) via a natural isomorphism.

To conclude this section of the notes, we will discuss an easier way to compute derived functors via acyclic

resolutions. Usually, it is difficult to actually produce an injective resolution within and arbitrary Abelian

category, which seem to be a prerequisite for computing derived functors. However, as it turns out, an easier-to-

find object (an acylic resolution) is good enough. First, let us define a generic resolution:

Definition IV.4 (Resolution). A resolution of an object X is a long exact sequence of the form 0 → X → I0 →
I1 → · · · .

Now, we can define an acyclic resolution:



16

Definition IV.5. If F is a left-exact functor, an object X is said to be F -acyclic if RiF (X; I) = 0 for i ≥ 1,

for some injective resolution I. An F -acyclic resolution of object X is a resolution X → J in which all Jk are

F -acyclic.

Theorem IV.2. If X → J is an F -acyclic resolution of X, then RiF (X; I) is isomorphic to the i-th cohomology

of 0 → F (J0) → F (J1) → · · · , for any injective resolution I of X.

Here is the idea of the proof (I’m not going to fill in the details because we essentially did all of the work already):

we can split up the long exact sequence into short exact sequences, and apply RiF . In the exact same way that

RiF kills injective objects, it will kill the Jk, by definition, and using an identical proof to when we were reasoning

about what the definition of derived functors should be, to show that RiF (X; I) is, in fact, isomorphic to the

cohomology of this resolution.

To conclude these notes, let us very quickly define sheaf cohomology. I’m not going to prove anything here:

I’m just going to state the results.

Definition IV.6. We define the global sections functor Γ to be the functor going from the category of sheaves of

Abelian groups over topological space X to the category of Abelian groups which sends F , to Γ(X,F) = F(X):

the group of global sections. Verifying that this is a functor is easy.

We can also show that:

Lemma IV.3. The category of Abelian groups Ab has enough injectives. In addition, the category of sheaves

of Abelian groups over X has enough injectives.

Lemma IV.4. The global sections functors is left-exact.

This then allows us to define sheaf cohomology:

Definition IV.7 (Sheaf cohomology). Given a sheaf of Abelian groups F over X, we define the j-th sheaf

cohomology group of F to be the j-th right derived functor with respect to some injective resolution I, RiΓ(F ; I).

We will usually denote this by Hj(X,F), and will stop caring about the particular I we use (defining these groups

up to isomorphism will suffice, as per usual).

A. Diagram chasing via generalized elements in Abelian categories

The main goal of this appendix is to explain a very useful technique for performing “elementwise diagram

chases” in potentially non-concrete Abelian categories by means of “generalized elements”. When tasked with

performing some kind of diagram chase while operating in the category of Abelian groups, or perhaps the category

of R-modules for some ring R, we are usually able to construct/prove properties of maps by considering where

they send particular elements of the group/module in question. In arbitrary Abelian categories, our underlying

objects are not always sets, and our arrows are not always set maps, therefore speaking of an “element” of an

object in an arbitrary Abelian category doesn’t make sense naively. However, with some work, we can show

that it is possible to come up with a notion of a generalized element of an object in an Abelian category, and

moreover, these generalized objects behave in many ways similarly to the underlying elements of an object in

some concrete, Abelian category (like Abelian groups or R-modules). This treatment follows Categories for the

Working Mathematician, by Mac Lane.

Let us first prove a technical lemma:

Lemma A.1. Given a pullback square in an Abelian category C, if the bottom edge f is epi, then the top edge

f ′ is epi. Also, the kernel k of f is k = g′ ◦ k′, where g′ is the left edge of the square and k′ is the kernel of f ′.



17

All together, this forms a diagram of the form

S D

A

B C

f ′

g′ g

k′

k

f

Proof. A pullback in an Abelian category can be constructed by means of products and equalizers. In particular,

we claim that if B ⊕ D is a biproduct with projections p1, p2 (which exists in our Abelian category), then

Ker(f ◦ p1− g ◦ p2), which also exists in the Abelian category, is a pullback. Letting S be the object of the kernel

and m be the monic into B ⊕D, we have left-exact sequence

0 S B ⊕D Cm f◦p1−g◦p2

We let g′ = p1 ◦m and f ′ = p2 ◦m. Of course, (f ◦ p1 − g ◦ p2) ◦m = 0, so f ◦ g′ = g ◦ f ′. In addition, given

some S′ and maps q1, q2 projecting onto B and D, where f ◦ q1 = g ◦ q2, so f ◦ q1 − g ◦ q2 = 0, then by the

the universal property of the kernel, there is unique j : S′ → S which makes the combined pullback diagram

commute, implying that S is, in fact, a pullback. It is also easy to see that f ◦ p1 − g ◦ p2 is a cokernel of m.

Thus, we can assume without loss of generality that the f ′ and g′ in the diagram of the lemma are of the form

in the previous paragraph (as any pullback will be isomorphic in the proper sense to a pullback of the above

form). In addition, if f is epi, note that f ◦ p1 − g ◦ p2 is epi, as if h ◦ (f ◦ p1 − g ◦ p2) = 0, then using injection

i1 : B → B ⊕D, we have

0 = h ◦ (f ◦ p1 − g ◦ p2) ◦ i1 = h ◦ f (A1)

implying h = 0, as f is assumed to be epi. From here, suppose u ◦ f ′ = u ◦ p2 ◦m = 0. It follows by the universal

property that there is a unique map r : C → X where for (f ◦ p1 − g ◦ p2) : B ⊕D → C, the defining map of the

cokernel (an epi), we have

r ◦ (f ◦ p1 − g ◦ p2) = u ◦ p2 (A2)

so composing on the right with i1 gives us r ◦ f = 0, and since f is epi, r = 0, so u ◦ p2 = 0. Then, since p2 is

epi, u = 0, and f ′ is epi as desired.

Finally, let k : A → B be the kernel of f . By the universal property of the pullback, we get unique map

k′ : A→ S,

A

S D

B C

k′ 0

k
f ′

g′ g

f

To show that k′ : A → S is the kernel of f ′, pick some map j : R → S such that f ′ ◦ j = 0. We have map

g′ ◦ j : R→ B where f ◦ g′ ◦ j = g′ ◦ f ◦ j = 0, so there is unique ℓ : R→ A with

R

A

B C

ℓ

g′◦j 0

k 0

f



18

so in particular, g′ ◦ j = g′ ◦ k′ ◦ ℓ. In addition, we have f ′ ◦ j = 0 = f ′ ◦ k′ ◦ ℓ from the first diagram. Thus,

putting j and k′ ◦ ℓ as the dashed arrow make the following diagram commute:

R

S D

B C

f ′

g′ g

f

so by uniqueness of the pullback, we must have j = k′ ◦ ℓ. Thus, we have induced ℓ making the following diagram

commute:

R

A

S D

ℓ

j 0

k′ 0

f ′

Moreover, ℓ is unique as if we replaced it with ℓ′, then such an ℓ′ would make the original kernel diagram where

ℓ appeared commute as well, and by uniqueness of this diagram, ℓ′ = ℓ. Thus, by definition, k′ : A → S is the

kernel of f ′ : S → D, and the proof is complete.

There is also a dual result which we can prove through similar means (for this reason, we omit the proof).

Lemma A.2. Given a pushout square in an Abelian category C, if the top edge g is epi, then the bottom edge

g′ is epi.

We will now use these technical lemmas to introduce machinery which will make our lives much easier, going

forward.

Definition A.1 (Elements). Let C be an Abelian category, let C be an object. We call an arrow x : X → C

(with target C) a member of C, and denote it by x ∈ C. We say that two members x and y of C are equivalent

if there are epis u and v such that x ◦ u = y ◦ v. One can easily see that this relation is symmetric and reflexive.

Claim A.1. The “equivalence of elements” relation defined above is transitive, hence an equivalence relation.

Proof. Suppose y and z are equivalent, so y ◦ v′ = z ◦w. We can combine together this commutative sqaure with

x ◦ u = y ◦ v to obtain the composite diagram

• • •

• a •

v′

w y

v

u

z x



19

We can then pullback in the top pair of arrows to obtain

•

• • •

• a •

p q

v′

w y

v

u

z x

where we note that now, z ◦ (w ◦ p) = x ◦ (u ◦ q). Since both v and v′ are epis, it follows from the technical

lemma that p and q are epis. Moreover, w and u are epis, so the compositions w ◦ p and u ◦ q are epis. Thus, z

is equivalent to x, and we have transitivity, as desired. When x and equivalent to y, we use the notation x ∼ y,

going forward.

Definition A.2. A generalized element (or just an element) of object C in Abelian category C is an equivalence

class of members x ∈ C under the equivalence relation ∼ defined above. The generalized element to which x

belongs is denoted by [x]. We also use the notation [x] ∈ C to denote a generalized element in C.

Given some arrow f : C → D, note that if x ∈ C is a member, then f ◦ x ∈ D. Moreover, if x ∼ y in C, then

f ◦ x ∼ f ◦ y in D, so the arrow f is a well-defined map from the generalized elements of C, to the generalized

elements of D, f([x]) = [f ◦x]. Because we are working in an Abelian category, note that every object has a zero

element, the equivalence class of the zero map 0 → C and member x has a negative −x, so we denote −[x] = [−x]
(if x ∼ y, then it is easy to check that −x ∼ −y). Note, however, that we generally cannot perform arithmetic

on generalized elements (i.e. x ≃ x′ and y ∼ y′ does not imply that x + y ∼ x′ + y′), because the epis that we

precompose these elements with may differ.

Now, let us prove the main theorem which characterizes elements

Theorem A.1. If C is an Abelian category, then the following hold:

1. Arrow f : C → D is monic if and only if, for all elements [x] ∈ C, f([x]) = [0] implies [x] = [0].

2. Moreover, f : C → D is monic if and only if, for all [x], [x′] ∈ C, f([x]) = f([x′]) implies [x] = [x′].

3. Arrow g : C → D is epi if and only if for all [z] ∈ D, there exists [y] ∈ C such that g([y]) = [z].

4. Arrow h : C → D is the zero arrow if and only if h([x]) = [0] for all [x] ∈ C.

5. Let f : C → D be an arrow, let j : K → C be a kernel of f , and let i : F → D be an image. Then for every

[x] ∈ C such that f([x]) = [0], there is unique [k] ∈ K such that [x] = j([k]). Since f(j([k])) = [0] for all

[k], it follows that such [x] and the [k] are in bijective correspondence.

6. Additionally, elements of the form f([x]) and i([z]) for [z] ∈ F are in bijective correspondence.

7. If the sequence B → C → D with arrows f and g is exact, then g◦f = 0 and for all [y] ∈ C with g([y]) = [0],

there exists [x] ∈ B with f([x]) = [y]. The converse is also true.

Proof. To begin, assume the condition that f([x]) = [f ◦x] = [0] implies [x] = [0]. Then if f ◦x = 0, then x◦v = 0

for some epi v, so x = 0, and f is monic. On the other hand, if f is monic, and f([x]) = [0], then there is epi u

such that f ◦ x ◦ u = 0, so x ◦ u = 0, so [x] = [0]. In addition, the condition “f([x]) = f([x′]) implies [x] = [x′]”

means that if f ◦x = 0 = f ◦ 0, so f([x]) = f([0]), then [x] = [0], so x ◦ v = 0, so x = 0. In addition, if f is monic,

then f ◦ x ◦ u = f ◦ x′ ◦ v implies that x ◦ u = x′ ◦ v, so [x] = [x′].

If there is [y] with g([y]) = [z] for each [z], then note that if f ◦g = 0, we can pick [y] ∈ C such that g([y]) = [id],

so that g ◦ y ◦ u = v for some epi v. Then we get

0 = f ◦ g ◦ y ◦ u = f ◦ u (A3)



20

and since u is an epi, f = 0. Thus, g is an epi. Conversely, if g is epi, then note that for given z, we have pullback

• •

C D

u

y z

g

so g ◦ y = z ◦ u, where u is epi because g is (from the technical lemma). Thus, g([y]) = [z]. Moving on to the

fourth point, if h([x]) = [0] for all x, then h ◦ x ◦ u = 0 for all x, so since u is epi, h ◦ x = 0 for all x, so setting

x = id, h = 0. On the other hand, if h is the zero arrow, clearly h([x]) = [0] for all [x].

Now, if f([x]) = [0], then f ◦ x ◦ u = 0 for some epi u, so f ◦ x = 0. Thus, there is unique k pointing to K such

that j ◦ k = x, so j([k]) = [x].

In addition, given some f([x]), we let q : D → Q be the cokernel map of f , and note that we have

q ◦ f ◦ x ◦ u = 0 (A4)

so q ◦ (f ◦ x) = 0, so there is z pointing to F such that i ◦ z = f ◦ x, which means that i([z]) = f([x]). To see

that this [z] is unique, if we also had i([z′]) = f([x]), then i ◦ z ◦ u = i ◦ z′ ◦ v, so since i is monic, z ◦ u = z′ ◦ v
and [z] = [z′]. Conversely, given i([z]), note that via the universal property, we have induced map f̃ ,

C

F

D Q

f̃

f 0

i 0

q

so that f = i ◦ f̃ . We can prove that f̃ is epi by noting that if u ◦ f̃ = 0, we have pushout of i : F → D and

u : F → ·. Note that

u′ ◦ f = u′ ◦ i ◦ f̃ = i′ ◦ u ◦ f̃ = 0 (A5)

so we get an induced map (the dahsed line), by universal property of the cokernel, in the following diagram:

C

F D Q

• •

f̃ f

i

u

q

u′
ϕ

i′

It then follows that i′ ◦ u = ϕ ◦ q ◦ i = 0. We know from the technical lemmas that i′ is mono, so u = 0, which

means f̃ is epi. Therefore, for some [z], we can choose [x] such that f̃([x]) = [z], so i([z]) = f([x]), as desired.

Moving along, if B → C → D is exact, we have Im(f) = Ker(g). Let j : K → C be the shared defining

monic morphism. First note that if g([y]) = 0, then we can pick [z] ∈ K such that j([z]) = [y], and [x] such that

f([x]) = j([z]). Moreover, since every f([x]) is of the form j([z]), we have

(g ◦ f)([x]) = (g ◦ j)([z]) = [0] (A6)

for all [x], so g ◦ f = 0, as desired.



21

To prove the converse, take the kernel map j : K → C and note that [j] ∈ C with g([j]) = 0, so f([x]) = [j]

for some [x], so f ◦ x ◦ u = j ◦ v for epis u and v. Thus, if we let q : C → Q be the quotient of Coker(f), then

q ◦ j ◦ v = 0, so q ◦ j = 0, so we have unique arrow from K to F , the image of f , making the universal diagram

commute. The fact that g ◦ f = 0 implies that g ◦ i = 0, as any (g ◦ i)([z]) can be written as (g ◦ i)([x]) = [0],

for any [z]. Thus, there is a unique arrow from F to K as well, making the universal diagram commute. Putting

these diagrams together, it is easy to check that the composite diagram commutes, and uniqueness implies these

arrows will be inverses of each other, so we have the desired exactness:

K F

D C Q

0 j i 0

g q

and the proof is finally complete.


	An introduction to derived functors and sheaf cohomology
	Introduction
	Category theory basics
	Abelian categories
	Derived functors
	Diagram chasing via generalized elements in Abelian categories


