Axler Algebra Notes, Problems and Solutions

Jack Ceroni

Contents

1 Section 3A 2
2 Section 3B 2
3 Section 3C 5
4 Section 3D 5
5 Section 3E 6
6 Section 3F 6
7 Section 5A 8
8 Section 5C 9

1 Section 3A

Problem 3.9. Give an example a function $\rho: \mathbb{C} \rightarrow \mathbb{C}$ such that:

$$
\rho(w+z)=\rho(w)+\rho(z)
$$

for all $w, z \in \mathbb{C}$ but is not linear.
Proof. Consider the complex conjugate function with $\rho(x)=\bar{x}$, where for $x=a+b i$, then $\bar{x}=a-b i$. Given complex x and y, we will have:

$$
\begin{aligned}
& \rho(x+y)=\rho\left(\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)\right)=\rho\left(\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i\right) \\
& =\left(a_{1}+a_{2}\right)-\left(b_{1}+b_{2}\right) i=\left(a_{1}-b_{1} i\right)+\left(a_{2}-b_{2} i\right)=\rho(x)+\rho(y)
\end{aligned}
$$

However, this function is not linear, as given some complex c with non-zero real and imaginary components, we know that c^{2} is also imaginary. We also know that $\bar{c} c$ is real. Thus: $\rho\left(c^{2}\right)$ can't be equal to $c \rho(c)=c \bar{c}$. Hence, the function is not linear.

Problem 3.12. If V is finite-dimensional with $\operatorname{dim} V>0$ and W is infinite-dimensional, prove that $\mathcal{L}(V, W)$ is infinite-dimensional.

Proof. Assume that $\mathcal{L}(V, W)$ is finite-dimensional. It follows that there exists a basis of the form $V=\left(v_{1}, \ldots, v_{n}\right)$ that span $\mathcal{L}(V, W)$. We also choose a basis m_{1}, \ldots, m_{k} for V, since $\operatorname{dim} V>0$. For each $w \in W$, consider the linear map f_{w} that takes m_{1} to w, and all other m_{i} to 0 . Since V is a basis, we must have:

$$
f_{w}\left(m_{1}\right)=a_{1} v_{1}\left(m_{1}\right)+\cdots+a_{n} v_{n}\left(m_{1}\right)=w
$$

for some choice of coefficients. It follows that $v_{1}\left(m_{1}\right), \ldots, v_{n}\left(m_{1}\right)$ forms a basis for W, a contradiction to the fact that W is infinite-dimensional

Problem 3.14. Suppose that V is finite dimensional with $\operatorname{dim} V \geq 2$. Prove that there exist $S, T \in \mathcal{L}(V, V)$ such that $S T \neq T S$.

Proof. Since linear maps can be explicitly defined as how they map basis vectors we first choose a basis v_{1}, \ldots, v_{n} of V. We define S to be the operator that sends v_{1} to v_{n} and v_{n} to v_{1}, with all other v_{k} being sent to themselves, and T to be the operator that sends v_{1} to 0 , and all other basis vectors to themself.

Clearly, $S T\left(v_{1}\right)=0$ and $T S\left(v_{1}\right)=v_{n}$. Since $n \geq 2$, these vectors are distinct. Thus $S T \neq T S$.

2 Section 3B

Problem 3.12. Suppose that V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap$ null $T=\{0\}$ and range $T=\{T u: u \in U\}$.

Proof. Let us consider a basis B of null T. We then choose some basis B^{\prime} of V, which, by rank-nullity theorem, will have cardinality greater than or equal to B. We use B to extend B^{\prime} to a basis C of V (which we can do, as each B^{\prime} is linearly independent).

Let $U=\operatorname{span}\left(C-B^{\prime}\right)$ (linear combinations of the elements in the new basis that are not in $\left.B^{\prime}\right)$. We assert that this is the U that satisfies these conditions.

Firstly, it is clear that U and null T contain the zero vector. In addition, if there were some non-zero vector v in U and null T, this would imply that there exist coefficients such that:

$$
v=a_{1} u_{1}+\cdots+a_{n} u_{n}=b_{1} v_{1}+\cdots+b_{m} v_{m}
$$

where $u_{i} \in U$ and $v_{i} \in B^{\prime}$. We know that $U \cup B^{\prime}$ forms a basis for V, so the above equation implies that:

$$
a_{j} u_{j}=b_{1} v_{1}+\cdots+b_{m} v_{m}-a_{1} u_{1}+\cdots+a_{j-1} v_{j-1}-a_{j+1} v_{j+1}+\cdots+a_{n} u_{n}
$$

where we know that at least one a_{i} (namely a_{j}) is non-zero, and at least one b_{i} is non-zero to conclude that the existence of v violates the linear independence of $U \cup B^{\prime}$.

Clearly, $\{T u: u \in U\} \subset$ range T. In addition, we pick some $T(x) \in$ range T. We have:

$$
x=a_{1} u_{1}+\cdots+a_{n} u_{n}+b_{1} v_{1}+\cdots+b_{m} v_{m}
$$

as $U \cup B^{\prime}$ is a basis for V. We then get:

$$
T(x)=T\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right)+T\left(b_{1} v_{1}+\cdots+b_{m} v_{m}\right)=T\left(a_{1} u_{1}+\cdots+a_{n} u_{n}\right)=T(u)
$$

where $u \in U$. Thus, range $T \subset\{T u: u \in U\}$. We have inclusion both ways, so $\{T u: u \in U\}=$ range T. This completes the proof.

Problem 3.19. Suppose that V and W are finite dimensional and U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null $T=U$ if and only if $\operatorname{dim} U \geq \operatorname{dim} V-\operatorname{dim} W$.

Proof. First, assume that exists such a T. From rank-nullity theorem, we have:

$$
\operatorname{dim} V=\operatorname{dim} \text { range } T+\operatorname{dim} \text { null } T=\operatorname{dim} \text { range } T+\operatorname{dim} U \leq \operatorname{dim} W+\operatorname{dim} U
$$

which clearly implies that $\operatorname{dim} U \geq \operatorname{dim} V-\operatorname{dim} W$. Conversely, assume that $\operatorname{dim} U \geq \operatorname{dim} V-\operatorname{dim} W$. Consider the basis u_{1}, \ldots, u_{n} of U. We extend this to a basis for V by adding vectors v_{1}, \ldots, v_{m}.

We define T to be the map that takes each u_{k} to 0 . We define a basis for W, which we label w_{1}, \ldots, w_{r}. We know that $\operatorname{dim} W \geq \operatorname{dim} V-\operatorname{dim} U$, which is equal to the number of vectors v_{k}. Thus, we are able to assign each v_{k} to some vector w_{s} of the basis for W.

We have assigned values to each basis vector of V, which means that T is linear. In addition, it is clear that null $T=U$.

Problem 3.26. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is such that $\operatorname{deg} D p=(\operatorname{deg} p)-1$ for every nonconstant polynomial $p \in \mathcal{P}(\mathbb{R})$. Prove that D is surjective.

Proof. Consider some $p \in \mathcal{P}(\mathbb{R})$ such that the degree of p is n. Consider the subset $\left\{x^{n+1}, x^{n}, \ldots, x\right\}$ of $\mathcal{P}(\mathbb{R})$. We map each of these terms under D to get the set $B=\left\{D\left(x^{n+1}, D\left(x^{n}\right), \ldots, D(x)\right\}\right.$.

The k-th elements of this list will be a polynomial of degree $n+1-k$. It is easy to check that such a list is linearly independent: we complete the redundancy-removal procedure, starting at $D(x)$, noting that for each $D\left(x^{k}\right)$, we cannot write $D\left(x^{k}\right)$ as a sum of the polynomials $\left\{D\left(x^{k-1}, \ldots, D(x)\right\}\right.$ as $D\left(x^{k}\right)$ contains a term of degree $n+1-k$, which none of the other elements posses.

It follows that the elements of B are linearly independent. Let us consider the subspace $V_{n} \subset \mathcal{P}(\mathbb{R})$ of all polynomials of degree n. Clearly, such a space will have degree $n+1$. It is also clear that each element of B is in V_{n}. Thus, B is a linearly independent list of length $n+1$ contained in V_{n}. It follows that B is a basis for V_{n}.

Thus, for the p that we considered initially, we can write:

$$
p=c_{1} D(x)+\cdots+c_{n+1} D\left(x^{n+1}\right)=D\left(c_{1} x+\cdots c_{n+1} x^{n+1}\right)
$$

Therefore, p can be written asd the image of some element of $\mathcal{P}(\mathbb{R})$ and the map D is surjective.

Problem 3.29. Suppose $\phi \in \mathcal{L}(V, \mathbb{F})$. Suppose that $u \in V$ is not in null ϕ. Prove that:

$$
V=\operatorname{null} \phi \oplus\{a u: a \in \mathbb{F}\}
$$

Proof. In the case that ϕ is the trivial map, the null space of ϕ is all V and the theorem is proved.
In the case that ϕ is not the trivial map, we know from rank-nullity theorem that:

$$
\operatorname{dim} V=\operatorname{dim} \text { null } \phi+\operatorname{dim} \text { range } \phi
$$

However, it is clear that range $\phi=\mathbb{F}$, so dim range $\phi=\operatorname{dim} \mathbb{F}=1$. This implies that:

$$
\operatorname{dim} V-\operatorname{dim} \text { null } \phi=1
$$

Now, we know that given some V, and a subspace U of V, there exists some U^{\prime} such that $V=U \oplus U^{\prime}$. We let $U=$ null ϕ. Since the sum of these subspaces is direct, it follows that:

$$
\operatorname{dim} V=\operatorname{dim} \text { null } \phi+\operatorname{dim} U^{\prime} \Rightarrow \operatorname{dim} U^{\prime}=\operatorname{dim} V-\operatorname{dim} \text { null } \phi=1
$$

where we used the equation above. Thus, U^{\prime} must be a one-dimensional subspace. All one dimensional subspaces of some vector space V are all multiples of a single vector, u. In addition, since the sum of U^{\prime} and the null space is direct, this vector cannot be in null ϕ. Therefore:

$$
U^{\prime}=\{a u: a \in \mathbb{F}\}
$$

and:

$$
V=\operatorname{null} \phi \oplus\{a u: a \in \mathbb{F}\}
$$

for some $u \in V$.
Now, the last thing we have to show is that U^{\prime} can be multiples of any vector not in the null-space (not just u). Given some $v \in V$, we will have, from above:

$$
v=n+a u
$$

for some n in the null space. Given some w also not in the null space, we choose c such that $a \phi(u)-c \phi(w)=0$, which we can do as we know that both $\phi(u)$ and $\phi(w)$ are non-zero. Thus:

$$
n+a u=(n+a u-c w)+c w=m+c w
$$

where m is in the null space. We prove inclusion the other way in a similar fashion, implying that:

$$
\text { null } \phi \oplus=\{a u: a \in \mathbb{F}\}=\text { null } \phi \oplus=\{a w: a \in \mathbb{F}\}
$$

Therefore, we are able to conclude that:

$$
V=\operatorname{null} \phi \oplus\{a u: a \in \mathbb{F}\}
$$

for any u not in the null space.

Problem 3.30. Suppose ϕ_{1} and ϕ_{2} are linear maps from V to \mathbb{F} that have the same null space. Show that there exists some $c \in \mathbb{F}$ such that $\phi_{1}=c \phi_{2}$.

Proof. Using the previous result, we can write V as the sum:

$$
V=\text { null } \phi_{1} \oplus\{a u: u \in \mathbb{F}\}=\text { null } \phi_{2} \oplus\{a u: u \in \mathbb{F}\}
$$

Let us pick some $v \in V$. We will have $v=n+a u$ where n is in the null-space of both maps. We will have:

$$
\phi_{1}(v)=\phi_{1}(n+a u)=\phi_{1}(n)+a \phi_{1}(u)
$$

We then choose some c such that $\phi_{1}(u)=c \phi_{2}(u)$, which we can do as both $\phi_{1}(u)$ and $\phi_{2}(u)$ are non-zero. In addition, we will have: $\phi_{1}(n)=\phi_{2}(n)=0$, as both maps have the same null-space. We note that $c \phi_{2}(n)=\phi_{2}(n)$. Thus, we will have:

$$
\phi_{1}(n)+a \phi_{1}(u)=c \phi_{2}(n)+c \phi_{2}(a u)=c \phi_{2}(n+a u)=c \phi_{2}(v)
$$

This completes the proof.

3 Section 3C

Problem 3.6. Suppose that V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that if dim range $T=1$ if and only if there exists a basis of V and a basis of W such that with respect to these bases, all entires of $\mathcal{M}(T)$ are equal to 1 .

Proof. Clearly, if there are bases of V and W such that $\mathcal{M}(T)$ has ones in all entries, then each basis vector in the chosen basis will get mapped to the sum of all the chosen basis vectors of W, which we call w. It follows that range $T=\operatorname{span}(w)$, implying that the dimension of the range of T is 1 .

Conversely, assume that dim range $T=1$. From rank-nullity theorem, it follows that $\operatorname{dim} \operatorname{null} T=$ $n-1$, where n is the dimension of V. Since the dimension of the range is 1 . There must exist some vector v of V such that $T(v)=w$, where $w \neq \mathbf{0}$. We choose a basis w_{1}, \ldots, w_{m} of W, which means that:

$$
w=a_{1} w_{1}+\cdots+a_{m} w_{m}
$$

We let the set $\left\{a_{1} w_{1}, \ldots, a_{m} w_{m}\right\}$ be a basis for W, and denote the k-th element of the basis w_{k}^{\prime}. Now, consider some basis v_{1}, \ldots, v_{n-1} for the null space of T. The set of vectors $\left\{v+v_{0}, v+v_{1}, \ldots, v+v_{n-1}\right\}$ (where $v_{0}=\mathbf{0}$) will clearly be a basis for V, as each vector in the n-element set is linearly independent. We denote the $k+1$-th element of this basis v_{k}^{\prime}.

Now, consider T acting upon some basis vector:

$$
T\left(v_{k}^{\prime}\right)=T(v)+T\left(v_{0}\right)=w=w_{1}^{\prime}+\cdots+w_{m}^{\prime}
$$

So in the primed bases, each element of $\mathcal{M}(T)$ is 1 , by definition.

4 Section 3D

Problem 3.17. Suppose V is finite-dimensional and \mathcal{E} is a subspace of $\mathcal{L}(V)$ such that $S T \in \mathcal{E}$ and $T S \in \mathcal{E}$ for all $S \in \mathcal{L}(V)$ and all $T \in \mathcal{E}$. Prove that $\mathcal{E}=\{\mathbf{0}\}$ or $\mathcal{E}=\mathcal{L}(V)$.

Proof. Clearly, \mathcal{E} can be the trivial subspace.

Now, consider what happens when we assume that there is some non-zero $T \in \mathcal{E}$. It follows that there must exist some $v \in V$ such that $T(v)=w_{1}$, where w_{1} is non-zero. Extending w_{1} to a basis for V, we get the set w_{1}, \ldots, w_{n}.

We let S_{1}^{k} be the map that takes w_{k} to v and all other basis elements to 0 . We let S_{2}^{k} be the map that takes w_{1} to w_{k}, and all other basis elements to 0 . It follows that the map $T S_{1}^{k}$ takes w_{k} to w_{1}, and all other basis vectors to 0 , and is in \mathcal{E}. We can then conclude that $S_{2}^{r} T S_{1}^{k}$ is also in \mathcal{E}, and is the map that takes w_{k} to w_{r}, and all other basis elements to 0 .

Clearly, any map from V to V can be written as a linear combination of maps of the form $S_{2}^{r} T S_{1}^{k}$. Since \mathcal{E} is a subspace, all such linear combinations are in \mathcal{E}. This implies that $\mathcal{E}=\mathcal{L}(V)$.

It follows that \mathcal{E} is either trivial, or the whole space $\mathcal{L}(V)$.

5 Section 3E

Problem 3.7. If $x, v \in V$ and U, W are subspaces of V, such that $v+U=x+W$, then $U=W$
Proof. Clearly, $v \in v+U$. It follows that $v=x+w$, for some $w \in W$. We then have $v-x=w$, so $v-x \in W$.

Now, consider $u \in U$. We will have $v+u=x+w^{\prime} \Rightarrow u=x-v+w^{\prime}=w^{\prime}-(v-x)=w^{\prime}-w$, so $u \in W$. Proving this each $w \in W$ is in U is identical. Thus, we have inclusion both ways, so $U=W$.

Problem 3.18. Suppose that $T \in \mathcal{L}(V, W)$ and U is a subspace of V. Let π denote the quotient map from V onto V / U. Prove that there exists $S \in \mathcal{L}(V / U, W)$ such that $T=S \circ \pi$ if and only if $U \subset$ null T.

Proof. Assume that there exists S such that $T=S \circ \pi$. Let us pick some $u \in U$. We note that $T u=(S \circ \pi)(u)=S([u])=S([0])=0$, so $U \subset$ null T.

Assume that $U \subset$ null T. Since U is a subspace of the null space, it follows that for $u \in U$, we have $T(u)=0$. Thus, given w and v in V such that $\pi(w)=\pi(v)$, we can notice that $w-v \in U$, by definition of the quotient space, so

$$
T(w-v)=T(w)-T(v)=0 \Rightarrow T(w)=T(v)
$$

Thus, we define S to be the map that takes $[v]$ in the quotient space to $T(v)$ in W. Such a map is well defined as if $[v]=[w]$, then $S([w])=T(w)=T(v)=S([v])$. Clearly, such a map is linear, as:

$$
S([w]+[v])=S([w+v])=T(w+v)=T(w)+T(v)=S([w])+S([v])
$$

and:

$$
\lambda S([w])=\lambda T(w)=T(\lambda w)=S([\lambda w])=S(\lambda[w])
$$

and the proof is complete.

6 Section 3F

Proposition 1. Let U^{0} be the annihiltor of U as a subspace of V. It follows that:

$$
\operatorname{dim} U^{0}+\operatorname{dim} U=\operatorname{dim} V
$$

Proof. We attempt to prove this in the language of linear functionals.
We know that V^{\prime} is the space of functionals from V to \mathbb{F}. We know that U is a subspace of V, so it follows that we can choose a basis v_{1}, \ldots, v_{n} of U, then extend it to a basis for V by adding vector v_{n+1}, \ldots, v_{m}.

Using this basis, we can define the dual basis on V^{\prime} of the elements $\phi_{i}\left(v_{k}\right)$ for v_{k} in the basis of V.
We define a linear map $T: V^{\prime} \rightarrow V^{\prime}$ which takes the basis element ϕ_{i} to itself if $1 \leq i \leq n$ (so the corresponding v_{i} is in U), and to 0 otherwise.

We assert that null $T=U^{0}$. Let us pick some $\phi \in$ null T. We will have:

$$
T\left(a_{1} \phi_{1}+\cdots+a_{m} \phi_{m}\right)=a_{1} \phi_{1}+\cdots+a_{n} \phi_{n}=0
$$

Since each element of the dual basis is linearly independent, all a_{k} must be 0 , thus, ϕ is a linear combination of the ϕ_{k} basis elements for $k \geq n+1$. It follows that $\phi(u)=0$ for all $u \in U$,
as u is a linear combination of exclusively the basis elements v_{k} from $k=1$ to $k=n$. Thus, ϕ is in U^{0}.
Now, if $\phi \in U^{0}$, it follows that $\phi(u)=0$ for all $u \in U$, so we will have:

$$
T(\phi)=a_{1} T\left(\phi_{1}\right)+\cdots a_{m} T\left(\phi_{m}\right)=a_{1} \phi_{1}+\cdots+a_{n} \phi_{n}
$$

Now, given some v_{k} for k between 1 and n, we will have:

$$
\left(a_{1} \phi_{1}+\cdots+a_{n} \phi_{n}\right)\left(v_{k}\right)=a_{k} \phi_{k}\left(v_{k}\right)=a_{k}=0
$$

so each a_{k} is equal to 0 , implying that $T(\phi)$ is the zero map, so ϕ is in the null space. Thus, $U^{0}=$ null T.

Finally, using the fundmanetal theorem of linear maps:

$$
\operatorname{dim} V^{\prime}=\operatorname{dim} \operatorname{range}(T)+\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} U^{\prime}+\operatorname{dim} U^{0}
$$

But we know that $\operatorname{dim} V^{\prime}=\operatorname{dim} V$ and $\operatorname{dim} U^{\prime}=\operatorname{dim} U$, so:

$$
\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} U^{0}
$$

Problem 3.36. Suppose U is a subspace of V. Let $i: U \rightarrow V$ be the inclusion map defined by $i(u)=u$. Thus, $i^{\prime} \in \mathcal{L}\left(V^{\prime}, U^{\prime}\right)$.

Show that null $i^{\prime}=U^{0}$
Proof. By definition, $i^{\prime}(\rho)=i \circ \rho$. Thus, the null space of i will be all ρ such that $\rho \circ i$ is the 0 map. Clearly, if $u \in U$, then $i(u)=u$, so we must then have $\rho(u)=0$ for all $u \in U$. Thus, ρ is in U^{0}. Recall that U^{0} is the set of all ρ such that $\rho(u)=0$ for all $u \in U$. It follows that $(\rho \circ i)(u)=\rho(u)=0$ for all $u \in U$, so ρ is in the null space. Thus, the two sets are equal.

Prove that if V is finite-dimensional, then range $i^{\prime}=U^{\prime}$.
Proof. range i^{\prime} is the set of all $\rho \circ i$. Clearly, this will be a map from U to \mathbb{F}, so it follows that $\rho \circ i$ is in U^{\prime}.

Conversely, consider some $\rho \in U^{\prime}$. We define γ to be the map that takes u to $\rho(u)$ if $u \in U$ and 0 otherwise. Since U is a subspace, it is easy to verify that such a map is linear. Clearly $\gamma \circ i$ will be equal to ρ. Thus, ρ is in the range of i^{\prime}.

It follows that the two sets are equal.
Prove that if V is finite dimensional, then $\tilde{i^{\prime}}$ is an isomorphism from V^{\prime} / U^{0} onto U^{\prime}
Proof. Recall the definition of the "tilded" operator, which is a map from $V /($ null $T)$ to W defined by $T(v+\operatorname{null} T)=T v$.

We prove first that \tilde{T} is an isomorphism from $V /($ null $T)$ to range T. First, it is easy to see that such a map is surjective. Now assume that $\tilde{T}(v+\operatorname{null} T)=T(v)=0$. Thus, $v \in$ null T, so $v+$ null $T=0+$ null T. It follows that $v+$ null is the zero vector of the space. Thus, the null space of \tilde{T} is trivial, so it is injective.

From the above results, $U^{0}=$ null i^{\prime} and $U^{\prime}=$ range i^{\prime}, so it follows immediately that \tilde{i}^{\prime} is an isomorphism.

Problem 3.37. Suppose U is a subspace of v. Let $\pi: V \rightarrow V / U$ be the usual quotient map. Thus, $\pi^{\prime} \in \mathcal{L}^{\prime}\left((V / U)^{\prime}, V^{\prime}\right)$.

Show that π^{\prime} is injective.

Proof. Assume that $\pi^{\prime}(\rho)=\rho \circ \pi=0$. Assume that ρ is not the 0 map, so there exists some $v+U$ such that $\rho(v+U) \neq 0$. It then follows that $(\rho \circ \pi)(v)=\rho(v+U) \neq 0$, so $\rho \circ \pi$ is not the zero map. Thus, ρ must be the the zero map. It follows that the null space of π^{\prime} is trivial, so it is injective.
Show that rangen $\pi^{\prime}=U^{0}$
Pick some $\rho \circ \pi$ is the range of π^{\prime}. Let us pick some $u \in U$. It follows that:

$$
(\rho \circ \pi)(u)=\rho(u+U)=\rho(0+U)=0
$$

as the zero vector must get mapped to the zero vector. Thus, $\rho \circ \pi$ is in U^{0}.
Conversely, consider some ρ in U^{0}.

$7 \quad$ Section 5A

Proposition 2. Given a set of m distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, along with a set of corresponding eigenvectors $V=\left\{v_{1}, \ldots, v_{m}\right\}$, the set V is linearly independent.
Proof. We will prove this proposition by induction. Clearly, this will be true in the case of one eigenvalue, λ. Assume that it holds true given n eigenvalues. We prove it holds true for $n+1$.
Consider the set of eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n+1}\right\}$ with corresponding eigenvectors $\left\{v_{1}, \ldots, v_{n+1}\right\}$. Assume that there is a non-trivial linear combination:

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}+a_{n+1} v_{n+1}=0
$$

Note that since eigenvectors are non-zero, for this non-trivial linear combination to be 0 , we must have at least two a_{i} not equal to 0 otherwise we would have $a_{k} v_{k}=0$, for non-zero a_{k}, which can't be the case. It follows that at least one a_{i} with $1 \leq i \leq n$ is non-zero.
We define the linear operator $\left(T-\lambda_{n+1} I\right)$. We then have:

$$
\left(T-\lambda_{i} I\right)\left(a_{1} v_{1}+\cdots+a_{n} v_{n}+a_{n+1} v_{n+1}\right)=\sum_{k \neq n+1} a_{k}\left(\lambda_{k}-\lambda_{n+1}\right) v_{k}=0
$$

But since all eigenvalues are unique, we must have $\lambda_{k}-\lambda_{n+1} \neq 0$. In addition, it least one a_{i} in this sum is non-zero. Thus, we have found a non-trivial linear combination of n eigenvectors that yields the zero vector, a contradiction to the inductive hypothesis.

It follows that the set $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is linearly independent and the proof is complete.

Problem 5.28. Suppose V is finite-dimensional with $\operatorname{dim} V \geq 3$ and $T \in \mathcal{L}(V)$ is such that every 2-dimensional subspace of V is invariant under T. Prove that T is a scalar multiple of the identity operator.

Proof. Consider some $v \in V$. Since the dimension of V is greater than or equal to 3 , we can also choose two other vectors, w and z that form a linearly independent set $\{v, w, z\}$. We consider the two-dimensional subspaces $A=\operatorname{span}(v, w)$ and $B=\operatorname{span}(v, z)$. We know that A is invariant, so it follows that $T v=a v+b w$, but we know that B is also invariant, so $T v=c v+d z$. This implies that:

$$
(c-a) v+d z-b w=0
$$

and since these vectors are linearly independent, we have $d=b=0$, so it follows that v is sent to a multiple of itself.

Now, we pick linearly independent v and w in V such that $T v=a v$ and $T w=b w$. We will have:

$$
T(v+w)=c(v+w)=T(v)+T(w)=a v+b w
$$

so since v and w are linearly independent, it follows that $c=a=b$, so $T v=c v$ and $T w=c w$. Thus, T is a scalar multiple of the identity map and the proof is complete.

Problem 5.35. Suppose V is finite-dimnensional, $T \in \mathcal{L}(V)$, and U is invariant under T. Prove that each eigenvalue of T / U is an eigenvalue of T.

Proof. Let us assume that we have λ such that there exists $v+U$ where $(T / U)(v+U)=T(v)+U=$ $\lambda v+U$. This implies that $T v-\lambda v \in U$.

Assume that
To do this, it is enough to show that the map $T-\lambda I$ is not surjective.

8 Section 5C

Problem 5.5. Suppose that V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$. Prove that T is diagonalizable if and only if:

$$
V=\operatorname{null}(T-\lambda I) \oplus \operatorname{range}(T-\lambda I)
$$

for every $\lambda \in \mathbb{C}$.
Proof. First, consider the case where $V=\operatorname{null}\left(T-\lambda_{k} I\right) \oplus \operatorname{range}\left(T-\lambda_{k} I\right)$. It follows that:

$$
V=E\left(\lambda_{1}, T\right) \oplus \cdots \oplus E\left(\lambda_{m}, T\right)
$$

Let us pick $v \in \bigoplus_{i \neq k} E\left(\lambda_{i}, T\right)$

