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1 Section 3A

Problem 3.9. Give an example a function p: C — C such that:

p(w +z) = p(w) + p(z)
for all w, z € C but is not linear.

Proof. Consider the complex conjugate function with p(z) = Z, where for x = a + bi, then
T = a — bi. Given complex x and y, we will have:

p(z +y) = p((a1 +ib1) + (a2 +ib2)) = p((a1 + az) + (b1 + b2)i)
= (a1 + az) — (b1 + b2)i = (a1 — b1) + (a2 — b2i) = p(x) + p(y)

However, this function is not linear, as given some complex ¢ with non-zero real and imaginary
components, we know that c? is also imaginary. We also know that ¢c is real. Thus: p(c?) can’t be
equal to cp(c) = cc. Hence, the function is not linear. O

Problem 3.12. If V is finite-dimensional with dim V > 0 and W is infinite-dimensional, prove
that £(V, W) is infinite-dimensional.

Proof. Assume that £(V, W) is finite-dimensional. It follows that there exists a basis of the form
V = (v1, ..., v,) that span L(V, W). We also choose a basis my, ..., my for V, since dim V > 0.
For each w € W, consider the linear map f,, that takes m; to w, and all other m; to 0. Since V is
a basis, we must have:

fuw(mi) = ayoi(ma) + -+ 4 anvp(my) = w
for some choice of coefficients. It follows that vi(my), ..., v,(m;) forms a basis for W, a contradiction
to the fact that W is infinite-dimensional O

Problem 3.14. Suppose that V is finite dimensional with dim V > 2. Prove that there exist
S, T € L(V, V) such that ST # T'S.

Proof. Since linear maps can be explicitly defined as how they map basis vectors we first choose a
basis v, ..., v, of V. We define S to be the operator that sends v; to v, and v, to vy, with all
other vg being sent to themselves, and T to be the operator that sends v; to 0, and all other basis
vectors to themself.

Clearly, ST(v1) = 0 and T'S(v1) = v,. Since n > 2, these vectors are distinct. Thus ST #TS. O

2 Section 3B

Problem 3.12. Suppose that V is finite-dimensional and T' € L(V, W). Prove that there exists a
subspace U of V such that U Nnull T = {0} and range T’ = {Tu : u € U}.

Proof. Let us consider a basis B of null T. We then choose some basis B’ of V', which, by rank-nullity
theorem, will have cardinality greater than or equal to B. We use B to extend B’ to a basis C of V
(which we can do, as each B’ is linearly independent).

Let U = span(C — B’) (linear combinations of the elements in the new basis that are not in B’). We
assert that this is the U that satisfies these conditions.

Firstly, it is clear that U and null T contain the zero vector. In addition, if there were some non-zero
vector v in U and null T, this would imply that there exist coefficients such that:

v=aiu1 + -+ +apty =b1v1 + - +bpom

where u; € U and v; € B’. We know that U U B’ forms a basis for V', so the above equation implies
that:



a;u; = biv1 + -+ +bpvy —aiur + -0 + Qj—1Vj—1 — Gj4+1Vj+1 + - F+anun

where we know that at least one a; (namely a;) is non-zero, and at least one b; is non-zero to
conclude that the existence of v violates the linear independence of U U B’.

Clearly, {T'u : w € U} C range T. In addition, we pick some T'(x) € range T'. We have:

T=a1u; + - +apuy +bivi+ - +bpu,
as U U B’ is a basis for V. We then get:

T(z) =T(aur + -+ +apuy) +T (v + -+ +bpvm) =T(arur + -+ +apuy,) = T(u)

where u € U. Thus, range T' C {Tu : u € U}. We have inclusion both ways, so {Tu : u € U} =

range 1. This completes the proof.
O

Problem 3.19. Suppose that V' and W are finite dimensional and U is a subspace of V. Prove
that there exists T' € £L(V, W) such that nullT = U if and only if dimU > dimV — dim W.

Proof. First, assume that exists such a T'. From rank-nullity theorem, we have:

dim V = dimrange T 4+ dim nullT’ = dimrange T'+ dim U < dim W + dim U

which clearly implies that dim U > dim V —dim W. Conversely, assume that dim U > dim V' —dim W.
Consider the basis u1, ..., u, of U. We extend this to a basis for V' by adding vectors vy, ..., Up,.

We define T' to be the map that takes each ui to 0. We define a basis for W, which we label
wy, ..., we. We know that dimW > dimV — dim U, which is equal to the number of vectors wvy.
Thus, we are able to assign each vy to some vector wy of the basis for W.

We have assigned values to each basis vector of V', which means that T is linear. In addition, it is
clear that nullT = U.
O

Problem 3.26. Suppose D € L(P(R), P(R)) is such that deg Dp = (deg p) — 1 for every non-
constant polynomial p € P(R). Prove that D is surjective.

Proof. Consider some p € P(R) such that the degree of p is n. Consider the subset {x" !, 2", ..., x}
of P(R). We map each of these terms under D to get the set B = {D(z"*!, D(z"), ..., D(x)}.

The k-th elements of this list will be a polynomial of degree n + 1 — k. It is easy to check that such
a list is linearly independent: we complete the redundancy-removal procedure, starting at D(z),
noting that for each D(x*), we cannot write D(z*) as a sum of the polynomials {D(z*~1, ..., D(z)}
as D(x") contains a term of degree n + 1 — k, which none of the other elements posses.

It follows that the elements of B are linearly independent. Let us consider the subspace V,, C P(R)
of all polynomials of degree n. Clearly, such a space will have degree n+ 1. It is also clear that each
element of B is in V},. Thus, B is a linearly independent list of length n + 1 contained in V,,. It
follows that B is a basis for V,.

Thus, for the p that we considered initially, we can write:

p=c1D@)+ - + o1 D) =Dz + -+ ezt

Therefore, p can be written asd the image of some element of P(R) and the map D is surjective.
O

Problem 3.29. Suppose ¢ € L(V, F). Suppose that v € V is not in null ¢. Prove that:

V=nul ¢®{au : a€F}



Proof. In the case that ¢ is the trivial map, the null space of ¢ is all V' and the theorem is proved.
In the case that ¢ is not the trivial map, we know from rank-nullity theorem that:

dim V =dim null ¢ + dim range ¢
However, it is clear that range ¢ = F, so dim range ¢ = dim F = 1. This implies that:
dim V —dim null ¢ =1

Now, we know that given some V', and a subspace U of V| there exists some U’ such that V = UaU’.
We let U = null ¢. Since the sum of these subspaces is direct, it follows that:

dim V =dim null ¢ +dim U’ = dimU’ =dim V —dim null ¢ =1

where we used the equation above. Thus, U’ must be a one-dimensional subspace. All one dimen-
sional subspaces of some vector space V are all multiples of a single vector, u. In addition, since the
sum of U’ and the null space is direct, this vector cannot be in null ¢. Therefore:

U'={au : a€F}
and:

V=nul¢®{au : acF}

for some u € V.

Now, the last thing we have to show is that U’ can be multiples of any vector not in the null-space
(not just u). Given some v € V, we will have, from above:
v=n-+au
for some n in the null space. Given some w also not in the null space, we choose ¢ such that
ag(u) — cp(w) = 0, which we can do as we know that both ¢(u) and ¢(w) are non-zero. Thus:
n+au=(n+au—cw)+ cw =m+ cw

where m is in the null space. We prove inclusion the other way in a similar fashion, implying that:
null p ®={au : a €F}=null ¢ & ={aw : a€F}
Therefore, we are able to conclude that:

V=nul ¢ & {au : aclF}

for any w not in the null space.
O

Problem 3.30. Suppose ¢; and ¢ are linear maps from V to F that have the same null space.
Show that there exists some ¢ € F such that ¢ = c¢s.

Proof. Using the previous result, we can write V as the sum:

V=nul¢; & {av:uecF} =nul ¢ & {au:uecF}

Let us pick some v € V. We will have v = n + au where n is in the null-space of both maps. We
will have:

$1(v) = p1(n + au) = ¢1(n) + ap1(u)

We then choose some ¢ such that ¢1(u) = c¢2(u), which we can do as both ¢;(u) and ¢2(u) are
non-zero. In addition, we will have: ¢1(n) = ¢2(n) = 0, as both maps have the same null-space. We
note that cga(n) = ¢2(n). Thus, we will have:



d1(n) + ad1(u) = epa(n) + cha(au) = cha(n + au) = cpa(v)
This completes the proof.

3 Section 3C

Problem 3.6. Suppose that V' and W are finite-dimensional and T € L£(V, W). Prove that if
dimrange T = 1 if and only if there exists a basis of V' and a basis of W such that with respect to
these bases, all entires of M(T') are equal to 1.

Proof. Clearly, if there are bases of V and W such that M(T') has ones in all entries, then each basis
vector in the chosen basis will get mapped to the sum of all the chosen basis vectors of W, which
we call w. It follows that range T' = span(w), implying that the dimension of the range of T is 1.

Conversely, assume that dimrange 7" = 1. From rank-nullity theorem, it follows that dimnullT =
n — 1, where n is the dimension of V. Since the dimension of the range is 1. There must exist some

vector v of V such that T'(v) = w, where w # 0. We choose a basis wy, ..., w,, of W, which means
that:

w=awr+ - +amWny
We let the set {ai1w1, ..., amwm} be a basis for W, and denote the k-th element of the basis w),. Now,
consider some basis vy, ..., v,—1 for the null space of T'. The set of vectors {v+wvg, v+v1, ..., v+v,-1}

(where vy = 0) will clearly be a basis for V, as each vector in the n-element set is linearly indepen-
dent. We denote the k + 1-th element of this basis v},.

Now, consider T acting upon some basis vector:

T(U;c) :T(U)+T(Uo) :w:wll-|- +w;n
So in the primed bases, each element of M(T) is 1, by definition.

4 Section 3D

Problem 3.17. Suppose V is finite-dimensional and £ is a subspace of £L(V') such that ST € £ and
TS e&forall Se L£(V)andall T € €. Prove that £ = {0} or &€ = L(V).

Proof. Clearly, £ can be the trivial subspace.

Now, consider what happens when we assume that there is some non-zero T' € £. It follows that
there must exist some v € V such that T'(v) = wy, where w; is non-zero. Extending w; to a basis
for V, we get the set wy, ..., wy,.

We let S¥ be the map that takes wy to v and all other basis elements to 0. We let S5 be the map
that takes w; to wy, and all other basis elements to 0. It follows that the map 7'S¥ takes wy, to wy,
and all other basis vectors to 0, and is in £&. We can then conclude that S5T'S¥ is also in £, and is
the map that takes wy to w,, and all other basis elements to 0.

Clearly, any map from V to V can be written as a linear combination of maps of the form S57T'S¥.
Since € is a subspace, all such linear combinations are in €. This implies that & = L(V).

It follows that £ is either trivial, or the whole space L(V). O



5 Section 3E
Problem 3.7. If z, v € V and U, W are subspaces of V', such that v+ U =2+ W, then U =W

Proof. Clearly, v € v+ U. It follows that v = x 4+ w, for some w € W. We then have v — z = w, so
v—xeW.

Now, consider u € U. We will have v+u=z+w = v=2z—-v4+w =w' - (v—2) =w —w,
so u € W. Proving this each w € W is in U is identical. Thus, we have inclusion both ways, so
U=w. O

Problem 3.18. Suppose that T' € L(V, W) and U is a subspace of V. Let 7 denote the quotient
map from V onto V/U. Prove that there exists S € L(V/U, W) such that T = S o 7 if and only if
UcCnul T.

Proof. Assume that there exists S such that 7' = S ow. Let us pick some u € U. We note that
Tu= (Som)(u) =5(u]) =S(0]) =0,s0 U Cnull T.

Assume that U C null T'. Since U is a subspace of the null space, it follows that for u € U, we have
T(u) = 0. Thus, given w and v in V such that m(w) = 7(v), we can notice that w —v € U, by
definition of the quotient space, so

T(w—v)=T(w)—Tw)=0 = T(w) =T(v)

Thus, we define S to be the map that takes [v] in the quotient space to T'(v) in W. Such a map is
well defined as if [v] = [w], then S([w]) = T'(w) = T'(v) = S([v]). Clearly, such a map is linear, as:

S([w] + [v]) = S(lw +v]) = T(w +v) = T(w) + T(v) = S([w]) + S([v])
and:

AS([w]) = AT(w) = T(Aw) = S([Mw]) = S(A[w])

and the proof is complete.

6 Section 3F
Proposition 1. Let U be the annihiltor of U as a subspace of V. It follows that:
dimU° + dimU = dim V/

Proof. We attempt to prove this in the language of linear functionals.

We know that V' is the space of functionals from V to F. We know that U is a subspace of V, so it
follows that we can choose a basis vy, ..., v, of U, then extend it to a basis for V by adding vector

Un+1; -5 Um-
Using this basis, we can define the dual basis on V' of the elements ¢;(vy) for vy in the basis of V.

We define a linear map T : V' — V' which takes the basis element ¢; to itself if 1 <14 <mn (so the
corresponding v; is in U), and to 0 otherwise.

We assert that null 7= U°. Let us pick some ¢ € null 7. We will have:

T(a1¢1+ +am¢m):al¢1+ +an¢nzo

Since each element of the dual basis is linearly independent, all a; must be 0, thus, ¢ is a lin-
ear combination of the ¢ basis elements for £k > n + 1. It follows that ¢(u) = 0 for all u € U,



as u is a linear combination of exclusively the basis elements vy, from k = 1 to k = n. Thus, ¢ is in U°.
Now, if ¢ € UY, it follows that ¢(u) = 0 for all u € U, so we will have:

T(¢) = alT(¢1) + - amT(¢m) = a1¢1 + -+ an¢n

Now, given some vy for k between 1 and n, we will have:

(@101 + -+ +andn)(vr) = arpdp(vy) =ar =0

so each ay is equal to 0, implying that T(¢) is the zero map, so ¢ is in the null space. Thus,
U =null T.

Finally, using the fundmanetal theorem of linear maps:

dim V' = dim range(T) + dim null(T) = dim U’ + dim U°
But we know that dim V' = dimV and dim U’ = dim U, so:

dimV = dim U + dim U°
O

Problem 3.36. Suppose U is a subspace of V. Let i : U — V be the inclusion map defined by
i(u) = u. Thus, i’ € L(V', U").

Show that null i’ = U°

Proof. By definition, i’'(p) = i o p. Thus, the null space of ¢ will be all p such that poi is the 0 map.
Clearly, if u € U, then i(u) = u, so we must then have p(u) = 0 for all uw € U. Thus, p is in U°.

Recall that UV is the set of all p such that p(u) = 0 for all u € U. Tt follows that (poi)(u) = p(u) =0
for all w € U, so p is in the null space. Thus, the two sets are equal. O

Prove that if V' is finite-dimensional, then range i’ = U’.
Proof. range i’ is the set of all p oi. Clearly, this will be a map from U to F, so it follows that poi

isin U’.

Conversely, consider some p € U’. We define v to be the map that takes u to p(u) if u € U and 0
otherwise. Since U is a subspace, it is easy to verify that such a map is linear. Clearly v o4 will be
equal to p. Thus, p is in the range of .

It follows that the two sets are equal. O
Prove that if V is finite dimensional, then i’ is an isomorphism from V' /UY onto U’

Proof. Recall the definition of the “tilded” operator, which is a map from V/(null T') to W defined
by T'(v 4+ null T') = Tw.

We prove first that T is an isomorphism from V/(null T') to range T. First, it is easy to see that
such a map is surjective. Now assume that T'(v + null T) = T(v) = 0. Thus, v € null T, so
v+null T'=0+null T. It follows that v + null is the zero vector of the space. Thus, the null space
of T is trivial, so it is injective.

From the above results, U° = null i/ and U’ = range i/, so it follows immediately that ¢ is an
isomorphism. O

Problem 3.37. Suppose U is a subspace of v. Let 7 : V. — V/U be the usual quotient map.
Thus, ©" € L/(V/U), V).

Show that ' is injective.



Proof. Assume that 7/(p) = pom = 0. Assume that p is not the 0 map, so there exists some v + U
such that p(v 4+ U) # 0. It then follows that (pom)(v) = p(v+U) # 0, so po 7 is not the zero map.
Thus, p must be the the zero map. It follows that the null space of 7’ is trivial, so it is injective. [

Show that rangen’ = U°
Pick some p o 7 is the range of 7’. Let us pick some u € U. It follows that:

(pom)(u) = plutU)=p(0+U)=0

as the zero vector must get mapped to the zero vector. Thus, po 7 is in U°.

Conversely, consider some p in U°.

7 Section 5A

Proposition 2. Given a set of m distinct eigenvalues A1, ..., Ap,, along with a set of corresponding
eigenvectors V.= {v1, ..., vy}, the set V is linearly independent.

Proof. We will prove this proposition by induction. Clearly, this will be true in the case of one
eigenvalue, X\. Assume that it holds true given n eigenvalues. We prove it holds true for n + 1.
Consider the set of eigenvalues {1, ..., Ap41} with corresponding eigenvectors {vi, ..., Upy1}.
Assume that there is a non-trivial linear combination:

aivy + 0+ apVy + Apyp1Vp41 =0

Note that since eigenvectors are non-zero, for this non-trivial linear combination to be 0, we must
have at least two a; not equal to 0 otherwise we would have aiv, = 0, for non-zero aj, which can’t
be the case. It follows that at least one a; with 1 < ¢ < n is non-zero.

We define the linear operator (T'— A,417). We then have:

(T = NI)(arv1 + -+ +apUn + Gn1Vpt1) = Z ar(Ak — Ang1)vp =0
k#n+1
But since all eigenvalues are unique, we must have A\, — A, 11 # 0. In addition, it least one a; in this
sum is non-zero. Thus, we have found a non-trivial linear combination of n eigenvectors that yields
the zero vector, a contradiction to the inductive hypothesis.

It follows that the set {vy, ..., v,41} is linearly independent and the proof is complete.
O

Problem 5.28. Suppose V is finite-dimensional with dim V' > 3 and T € £(V) is such that every
2-dimensional subspace of V' is invariant under 7T'. Prove that T is a scalar multiple of the identity
operator.

Proof. Consider some v € V. Since the dimension of V is greater than or equal to 3, we can also
choose two other vectors, w and z that form a linearly independent set {v, w, z}. We consider the
two-dimensional subspaces A = span(v, w) and B = span(v, z). We know that A is invariant, so
it follows that Tv = av + bw, but we know that B is also invariant, so Tv = cv + dz. This implies
that:

(c—a)v+dz—bw=0
and since these vectors are linearly independent, we have d = b = 0, so it follows that v is sent to a
multiple of itself.

Now, we pick linearly independent v and w in V such that Tv = av and Tw = bw. We will have:

Tw+w)=clv+w)=Tw)+T(w) =av+ bw

so since v and w are linearly independent, it follows that ¢ = a = b, so Tv = cv and Tw = cw. Thus,

T is a scalar multiple of the identity map and the proof is complete.
O



Problem 5.35. Suppose V is finite-dimnensional, T € £(V), and U is invariant under T. Prove
that each eigenvalue of T'/U is an eigenvalue of T.

Proof. Let us assume that we have A such that there exists v+ U where (T/U)(v+U) =T (v)+U =
Av + U. This implies that Tv — Av € U.

Assume that
To do this, it is enough to show that the map T — AI is not surjective. O

8 Section 5C

Problem 5.5. Suppose that V is a finite-dimensional vector space and T € L(V'). Prove that T is
diagonalizable if and only if:

V =null(T — X]) @ range(T — \I)
for every A € C.
Proof. First, consider the case where V' = null(T — M\ I) ® range(T — AI). It follows that:

V=EM,T)® - ®EMn, T)
Let us pick v € @, E(Ni, T) O
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