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1 Section 3A

Problem 3.9. Give an example a function ρ : C → C such that:

ρ(w + z) = ρ(w) + ρ(z)

for all w, z ∈ C but is not linear.

Proof. Consider the complex conjugate function with ρ(x) = x̄, where for x = a + bi, then
x̄ = a− bi. Given complex x and y, we will have:

ρ(x+ y) = ρ((a1 + ib1) + (a2 + ib2)) = ρ((a1 + a2) + (b1 + b2)i)

= (a1 + a2)− (b1 + b2)i = (a1 − b1i) + (a2 − b2i) = ρ(x) + ρ(y)

However, this function is not linear, as given some complex c with non-zero real and imaginary
components, we know that c2 is also imaginary. We also know that c̄c is real. Thus: ρ(c2) can’t be
equal to cρ(c) = cc̄. Hence, the function is not linear.

Problem 3.12. If V is finite-dimensional with dim V > 0 and W is infinite-dimensional, prove
that L(V, W ) is infinite-dimensional.

Proof. Assume that L(V, W ) is finite-dimensional. It follows that there exists a basis of the form
V = (v1, ..., vn) that span L(V, W ). We also choose a basis m1, ..., mk for V , since dim V > 0.
For each w ∈ W , consider the linear map fw that takes m1 to w, and all other mi to 0. Since V is
a basis, we must have:

fw(m1) = a1v1(m1) + · · · + anvn(m1) = w

for some choice of coefficients. It follows that v1(m1), ..., vn(m1) forms a basis for W , a contradiction
to the fact that W is infinite-dimensional

Problem 3.14. Suppose that V is finite dimensional with dim V ≥ 2. Prove that there exist
S, T ∈ L(V, V ) such that ST 6= TS.

Proof. Since linear maps can be explicitly defined as how they map basis vectors we first choose a
basis v1, ..., vn of V . We define S to be the operator that sends v1 to vn and vn to v1, with all
other vk being sent to themselves, and T to be the operator that sends v1 to 0, and all other basis
vectors to themself.

Clearly, ST (v1) = 0 and TS(v1) = vn. Since n ≥ 2, these vectors are distinct. Thus ST 6= TS.

2 Section 3B

Problem 3.12. Suppose that V is finite-dimensional and T ∈ L(V, W ). Prove that there exists a
subspace U of V such that U ∩ null T = {0} and range T = {Tu : u ∈ U}.

Proof. Let us consider a basis B of null T . We then choose some basis B′ of V , which, by rank-nullity
theorem, will have cardinality greater than or equal to B. We use B to extend B′ to a basis C of V
(which we can do, as each B′ is linearly independent).

Let U = span(C−B′) (linear combinations of the elements in the new basis that are not in B′). We
assert that this is the U that satisfies these conditions.

Firstly, it is clear that U and null T contain the zero vector. In addition, if there were some non-zero
vector v in U and null T , this would imply that there exist coefficients such that:

v = a1u1 + · · · + anun = b1v1 + · · · + bmvm

where ui ∈ U and vi ∈ B′. We know that U ∪B′ forms a basis for V , so the above equation implies
that:
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ajuj = b1v1 + · · · + bmvm − a1u1 + · · · + aj−1vj−1 − aj+1vj+1 + · · · + anun

where we know that at least one ai (namely aj) is non-zero, and at least one bi is non-zero to
conclude that the existence of v violates the linear independence of U ∪B′.

Clearly, {Tu : u ∈ U} ⊂ range T . In addition, we pick some T (x) ∈ range T . We have:

x = a1u1 + · · · + anun + b1v1 + · · · + bmvm

as U ∪B′ is a basis for V . We then get:

T (x) = T (a1u1 + · · · + anun) + T (b1v1 + · · · + bmvm) = T (a1u1 + · · · + anun) = T (u)

where u ∈ U . Thus, range T ⊂ {Tu : u ∈ U}. We have inclusion both ways, so {Tu : u ∈ U} =
range T . This completes the proof.

Problem 3.19. Suppose that V and W are finite dimensional and U is a subspace of V . Prove
that there exists T ∈ L(V, W ) such that nullT = U if and only if dimU ≥ dimV − dimW .

Proof. First, assume that exists such a T . From rank-nullity theorem, we have:

dimV = dim range T + dim nullT = dim range T + dimU ≤ dimW + dimU

which clearly implies that dimU ≥ dimV−dimW . Conversely, assume that dimU ≥ dimV−dimW .
Consider the basis u1, ..., un of U . We extend this to a basis for V by adding vectors v1, ..., vm.

We define T to be the map that takes each uk to 0. We define a basis for W , which we label
w1, ..., wr. We know that dimW ≥ dimV − dimU , which is equal to the number of vectors vk.
Thus, we are able to assign each vk to some vector ws of the basis for W .

We have assigned values to each basis vector of V , which means that T is linear. In addition, it is
clear that nullT = U .

Problem 3.26. Suppose D ∈ L(P(R), P(R)) is such that deg Dp = (deg p) − 1 for every non-
constant polynomial p ∈ P(R). Prove that D is surjective.

Proof. Consider some p ∈ P(R) such that the degree of p is n. Consider the subset {xn+1, xn, ..., x}
of P(R). We map each of these terms under D to get the set B = {D(xn+1, D(xn), ..., D(x)}.

The k-th elements of this list will be a polynomial of degree n+ 1− k. It is easy to check that such
a list is linearly independent: we complete the redundancy-removal procedure, starting at D(x),
noting that for each D(xk), we cannot write D(xk) as a sum of the polynomials {D(xk−1, ..., D(x)}
as D(xk) contains a term of degree n+ 1− k, which none of the other elements posses.

It follows that the elements of B are linearly independent. Let us consider the subspace Vn ⊂ P(R)
of all polynomials of degree n. Clearly, such a space will have degree n+ 1. It is also clear that each
element of B is in Vn. Thus, B is a linearly independent list of length n + 1 contained in Vn. It
follows that B is a basis for Vn.

Thus, for the p that we considered initially, we can write:

p = c1D(x) + · · · + cn+1D(xn+1) = D(c1x+ · · · cn+1x
n+1)

Therefore, p can be written asd the image of some element of P(R) and the map D is surjective.

Problem 3.29. Suppose φ ∈ L(V, F). Suppose that u ∈ V is not in null φ. Prove that:

V = null φ⊕ {au : a ∈ F}
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Proof. In the case that φ is the trivial map, the null space of φ is all V and the theorem is proved.

In the case that φ is not the trivial map, we know from rank-nullity theorem that:

dim V = dim null φ+ dim range φ

However, it is clear that range φ = F, so dim range φ = dim F = 1. This implies that:

dim V − dim null φ = 1

Now, we know that given some V , and a subspace U of V , there exists some U ′ such that V = U⊕U ′.
We let U = null φ. Since the sum of these subspaces is direct, it follows that:

dim V = dim null φ+ dim U ′ ⇒ dimU ′ = dim V − dim null φ = 1

where we used the equation above. Thus, U ′ must be a one-dimensional subspace. All one dimen-
sional subspaces of some vector space V are all multiples of a single vector, u. In addition, since the
sum of U ′ and the null space is direct, this vector cannot be in null φ. Therefore:

U ′ = {au : a ∈ F}

and:

V = null φ⊕ {au : a ∈ F}

for some u ∈ V .

Now, the last thing we have to show is that U ′ can be multiples of any vector not in the null-space
(not just u). Given some v ∈ V , we will have, from above:

v = n+ au

for some n in the null space. Given some w also not in the null space, we choose c such that
aφ(u)− cφ(w) = 0, which we can do as we know that both φ(u) and φ(w) are non-zero. Thus:

n+ au = (n+ au− cw) + cw = m+ cw

where m is in the null space. We prove inclusion the other way in a similar fashion, implying that:

null φ ⊕ = {au : a ∈ F} = null φ ⊕ = {aw : a ∈ F}

Therefore, we are able to conclude that:

V = null φ⊕ {au : a ∈ F}

for any u not in the null space.

Problem 3.30. Suppose φ1 and φ2 are linear maps from V to F that have the same null space.
Show that there exists some c ∈ F such that φ1 = cφ2.

Proof. Using the previous result, we can write V as the sum:

V = null φ1 ⊕ {au : u ∈ F} = null φ2 ⊕ {au : u ∈ F}

Let us pick some v ∈ V . We will have v = n + au where n is in the null-space of both maps. We
will have:

φ1(v) = φ1(n+ au) = φ1(n) + aφ1(u)

We then choose some c such that φ1(u) = cφ2(u), which we can do as both φ1(u) and φ2(u) are
non-zero. In addition, we will have: φ1(n) = φ2(n) = 0, as both maps have the same null-space. We
note that cφ2(n) = φ2(n). Thus, we will have:
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φ1(n) + aφ1(u) = cφ2(n) + cφ2(au) = cφ2(n+ au) = cφ2(v)

This completes the proof.

3 Section 3C

Problem 3.6. Suppose that V and W are finite-dimensional and T ∈ L(V, W ). Prove that if
dim range T = 1 if and only if there exists a basis of V and a basis of W such that with respect to
these bases, all entires of M(T ) are equal to 1.

Proof. Clearly, if there are bases of V and W such thatM(T ) has ones in all entries, then each basis
vector in the chosen basis will get mapped to the sum of all the chosen basis vectors of W , which
we call w. It follows that range T = span(w), implying that the dimension of the range of T is 1.

Conversely, assume that dim range T = 1. From rank-nullity theorem, it follows that dim nullT =
n− 1, where n is the dimension of V . Since the dimension of the range is 1. There must exist some
vector v of V such that T (v) = w, where w 6= 0. We choose a basis w1, ..., wm of W , which means
that:

w = a1w1 + · · · + amwm

We let the set {a1w1, ..., amwm} be a basis for W , and denote the k-th element of the basis w′k. Now,
consider some basis v1, ..., vn−1 for the null space of T . The set of vectors {v+v0, v+v1, ..., v+vn−1}
(where v0 = 0) will clearly be a basis for V , as each vector in the n-element set is linearly indepen-
dent. We denote the k + 1-th element of this basis v′k.

Now, consider T acting upon some basis vector:

T (v′k) = T (v) + T (v0) = w = w′1 + · · · + w′m

So in the primed bases, each element of M(T ) is 1, by definition.

4 Section 3D

Problem 3.17. Suppose V is finite-dimensional and E is a subspace of L(V ) such that ST ∈ E and
TS ∈ E for all S ∈ L(V ) and all T ∈ E . Prove that E = {0} or E = L(V ).

Proof. Clearly, E can be the trivial subspace.

Now, consider what happens when we assume that there is some non-zero T ∈ E . It follows that
there must exist some v ∈ V such that T (v) = w1, where w1 is non-zero. Extending w1 to a basis
for V , we get the set w1, ..., wn.

We let Sk
1 be the map that takes wk to v and all other basis elements to 0. We let Sk

2 be the map
that takes w1 to wk, and all other basis elements to 0. It follows that the map TSk

1 takes wk to w1,
and all other basis vectors to 0, and is in E . We can then conclude that Sr

2TS
k
1 is also in E , and is

the map that takes wk to wr, and all other basis elements to 0.

Clearly, any map from V to V can be written as a linear combination of maps of the form Sr
2TS

k
1 .

Since E is a subspace, all such linear combinations are in E . This implies that E = L(V ).

It follows that E is either trivial, or the whole space L(V ).
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5 Section 3E

Problem 3.7. If x, v ∈ V and U, W are subspaces of V , such that v + U = x+W , then U = W

Proof. Clearly, v ∈ v + U . It follows that v = x+ w, for some w ∈W . We then have v − x = w, so
v − x ∈W .

Now, consider u ∈ U . We will have v + u = x + w′ ⇒ u = x − v + w′ = w′ − (v − x) = w′ − w,
so u ∈ W . Proving this each w ∈ W is in U is identical. Thus, we have inclusion both ways, so
U = W .

Problem 3.18. Suppose that T ∈ L(V, W ) and U is a subspace of V . Let π denote the quotient
map from V onto V/U . Prove that there exists S ∈ L(V/U, W ) such that T = S ◦ π if and only if
U ⊂ null T .

Proof. Assume that there exists S such that T = S ◦ π. Let us pick some u ∈ U . We note that
Tu = (S ◦ π)(u) = S([u]) = S([0]) = 0, so U ⊂ null T .

Assume that U ⊂ null T . Since U is a subspace of the null space, it follows that for u ∈ U , we have
T (u) = 0. Thus, given w and v in V such that π(w) = π(v), we can notice that w − v ∈ U , by
definition of the quotient space, so

T (w − v) = T (w)− T (v) = 0 ⇒ T (w) = T (v)

Thus, we define S to be the map that takes [v] in the quotient space to T (v) in W . Such a map is
well defined as if [v] = [w], then S([w]) = T (w) = T (v) = S([v]). Clearly, such a map is linear, as:

S([w] + [v]) = S([w + v]) = T (w + v) = T (w) + T (v) = S([w]) + S([v])

and:

λS([w]) = λT (w) = T (λw) = S([λw]) = S(λ[w])

and the proof is complete.

6 Section 3F

Proposition 1. Let U0 be the annihiltor of U as a subspace of V . It follows that:

dimU0 + dimU = dimV

Proof. We attempt to prove this in the language of linear functionals.

We know that V ′ is the space of functionals from V to F. We know that U is a subspace of V , so it
follows that we can choose a basis v1, ..., vn of U , then extend it to a basis for V by adding vector
vn+1, ..., vm.

Using this basis, we can define the dual basis on V ′ of the elements φi(vk) for vk in the basis of V .

We define a linear map T : V ′ → V ′ which takes the basis element φi to itself if 1 ≤ i ≤ n (so the
corresponding vi is in U), and to 0 otherwise.

We assert that null T = U0. Let us pick some φ ∈ null T . We will have:

T (a1φ1 + · · · + amφm) = a1φ1 + · · · + anφn = 0

Since each element of the dual basis is linearly independent, all ak must be 0, thus, φ is a lin-
ear combination of the φk basis elements for k ≥ n + 1. It follows that φ(u) = 0 for all u ∈ U ,
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as u is a linear combination of exclusively the basis elements vk from k = 1 to k = n. Thus, φ is in U0.

Now, if φ ∈ U0, it follows that φ(u) = 0 for all u ∈ U , so we will have:

T (φ) = a1T (φ1) + · · · amT (φm) = a1φ1 + · · · + anφn

Now, given some vk for k between 1 and n, we will have:

(a1φ1 + · · · + anφn)(vk) = akφk(vk) = ak = 0

so each ak is equal to 0, implying that T (φ) is the zero map, so φ is in the null space. Thus,
U0 = null T .

Finally, using the fundmanetal theorem of linear maps:

dimV ′ = dim range(T ) + dim null(T ) = dim U ′ + dimU0

But we know that dimV ′ = dimV and dimU ′ = dimU , so:

dimV = dimU + dimU0

Problem 3.36. Suppose U is a subspace of V . Let i : U → V be the inclusion map defined by
i(u) = u. Thus, i′ ∈ L(V ′, U ′).

Show that null i′ = U0

Proof. By definition, i′(ρ) = i ◦ ρ. Thus, the null space of i will be all ρ such that ρ ◦ i is the 0 map.
Clearly, if u ∈ U , then i(u) = u, so we must then have ρ(u) = 0 for all u ∈ U . Thus, ρ is in U0.
Recall that U0 is the set of all ρ such that ρ(u) = 0 for all u ∈ U . It follows that (ρ◦ i)(u) = ρ(u) = 0
for all u ∈ U , so ρ is in the null space. Thus, the two sets are equal.

Prove that if V is finite-dimensional, then range i′ = U ′.

Proof. range i′ is the set of all ρ ◦ i. Clearly, this will be a map from U to F, so it follows that ρ ◦ i
is in U ′.

Conversely, consider some ρ ∈ U ′. We define γ to be the map that takes u to ρ(u) if u ∈ U and 0
otherwise. Since U is a subspace, it is easy to verify that such a map is linear. Clearly γ ◦ i will be
equal to ρ. Thus, ρ is in the range of i′.

It follows that the two sets are equal.

Prove that if V is finite dimensional, then ĩ′ is an isomorphism from V ′/U0 onto U ′

Proof. Recall the definition of the “tilded” operator, which is a map from V/(null T ) to W defined
by T (v + null T ) = Tv.

We prove first that T̃ is an isomorphism from V/(null T ) to range T . First, it is easy to see that
such a map is surjective. Now assume that T̃ (v + null T ) = T (v) = 0. Thus, v ∈ null T , so
v+ null T = 0 + null T . It follows that v+ null is the zero vector of the space. Thus, the null space
of T̃ is trivial, so it is injective.

From the above results, U0 = null i′ and U ′ = range i′, so it follows immediately that ĩ′ is an
isomorphism.

Problem 3.37. Suppose U is a subspace of v. Let π : V → V/U be the usual quotient map.
Thus, π′ ∈ L′((V/U)′, V ′).

Show that π′ is injective.
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Proof. Assume that π′(ρ) = ρ ◦ π = 0. Assume that ρ is not the 0 map, so there exists some v + U
such that ρ(v+U) 6= 0. It then follows that (ρ ◦ π)(v) = ρ(v+U) 6= 0, so ρ ◦ π is not the zero map.
Thus, ρ must be the the zero map. It follows that the null space of π′ is trivial, so it is injective.

Show that rangeπ′ = U0

Pick some ρ ◦ π is the range of π′. Let us pick some u ∈ U . It follows that:

(ρ ◦ π)(u) = ρ(u+ U) = ρ(0 + U) = 0

as the zero vector must get mapped to the zero vector. Thus, ρ ◦ π is in U0.

Conversely, consider some ρ in U0.

7 Section 5A

Proposition 2. Given a set of m distinct eigenvalues λ1, ..., λm, along with a set of corresponding
eigenvectors V = {v1, ..., vm}, the set V is linearly independent.

Proof. We will prove this proposition by induction. Clearly, this will be true in the case of one
eigenvalue, λ. Assume that it holds true given n eigenvalues. We prove it holds true for n+ 1.
Consider the set of eigenvalues {λ1, ..., λn+1} with corresponding eigenvectors {v1, ..., vn+1}.
Assume that there is a non-trivial linear combination:

a1v1 + · · · + anvn + an+1vn+1 = 0

Note that since eigenvectors are non-zero, for this non-trivial linear combination to be 0, we must
have at least two ai not equal to 0 otherwise we would have akvk = 0, for non-zero ak, which can’t
be the case. It follows that at least one ai with 1 ≤ i ≤ n is non-zero.
We define the linear operator (T − λn+1I). We then have:

(T − λiI)(a1v1 + · · · + anvn + an+1vn+1) =
∑

k 6=n+1

ak(λk − λn+1)vk = 0

But since all eigenvalues are unique, we must have λk−λn+1 6= 0. In addition, it least one ai in this
sum is non-zero. Thus, we have found a non-trivial linear combination of n eigenvectors that yields
the zero vector, a contradiction to the inductive hypothesis.

It follows that the set {v1, ..., vn+1} is linearly independent and the proof is complete.

Problem 5.28. Suppose V is finite-dimensional with dimV ≥ 3 and T ∈ L(V ) is such that every
2-dimensional subspace of V is invariant under T . Prove that T is a scalar multiple of the identity
operator.

Proof. Consider some v ∈ V . Since the dimension of V is greater than or equal to 3, we can also
choose two other vectors, w and z that form a linearly independent set {v, w, z}. We consider the
two-dimensional subspaces A = span(v, w) and B = span(v, z). We know that A is invariant, so
it follows that Tv = av + bw, but we know that B is also invariant, so Tv = cv + dz. This implies
that:

(c− a)v + dz − bw = 0

and since these vectors are linearly independent, we have d = b = 0, so it follows that v is sent to a
multiple of itself.

Now, we pick linearly independent v and w in V such that Tv = av and Tw = bw. We will have:

T (v + w) = c(v + w) = T (v) + T (w) = av + bw

so since v and w are linearly independent, it follows that c = a = b, so Tv = cv and Tw = cw. Thus,
T is a scalar multiple of the identity map and the proof is complete.
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Problem 5.35. Suppose V is finite-dimnensional, T ∈ L(V ), and U is invariant under T . Prove
that each eigenvalue of T/U is an eigenvalue of T .

Proof. Let us assume that we have λ such that there exists v+U where (T/U)(v+U) = T (v)+U =
λv + U . This implies that Tv − λv ∈ U .

Assume that
To do this, it is enough to show that the map T − λI is not surjective.

8 Section 5C

Problem 5.5. Suppose that V is a finite-dimensional vector space and T ∈ L(V ). Prove that T is
diagonalizable if and only if:

V = null(T − λI)⊕ range(T − λI)

for every λ ∈ C.

Proof. First, consider the case where V = null(T − λkI)⊕ range(T − λkI). It follows that:

V = E(λ1, T )⊕ · · · ⊕ E(λm, T )

Let us pick v ∈
⊕

i 6=k E(λi, T )
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