Jack Ceroni

jackceroni@gmail.com (905)-220-2032 https://lucaman99.github.io Last Updated: July 13th, 2023

Education September 2020— Present	 Degree: Bachelor of Science in Pure Mathematics Where: University of Toronto, Pure Math Specialist Program Cumulative GPA: 4.0/4.0
Employment May 2023— Present	Position: Visiting Research StudentWhere: Massachusetts Institute of Technology
	• Working in Isaac Chuang's research group in the Research Lab- oratory of Electronics.
	• Collaborating with Zane M. Rossi on research in fault-tolerant quantum algorithms.
September 2022— Present	Position: Research Scientist Where: Stealth Startup
	• Was the first (non-founder) employee at a quantum comput- ing/machine learning startup, started by former team leads at Google, IBM, and BMW Quantum. Took a gap year from school to help build the initial versions of the company's core technol- ogy.
	• Built the core code-base utilized for quantum simulation and probabilistic machine learning applications.
	• Led the development of novel theoretical work and error bounds related to quantum algorithms for simulating large thermal states.
April 2021— September 2021	Position: Quantum Algorithms Research Intern Where: Xanadu Quantum Technologies
	• Conducted research on quantum machine learning for generat- ing approximate molecular ground states. Developed sample bounds for gradient calculations, Cramer-Rao lower bounds on data requirements for the model, and performed numerical sim- ulations.
	• Explored other research directions in the regime of fault-tolerant quantum algorithms for quantum chemistry, namely QSVT-based algorithms for simulation of molecular vibronic structure.

April 2021— September 2021	Position: Quantum Research ResidentWhere: Xanadu Quantum Technologies		
	 Conducted research on performing end-to-end quantum chemistry simulations on quantum computers, and new techniques for computing accurate energy derivatives on quantum devices. Built software on top of the PennyLane library for simulating 		
	quantum computational chemistry calculations.		
	• Developed the initial version of an automatically differentiable Hartree-Fock solver, for computing derivatives of molecular Hamil- tonians and atomic basis set parameters.		
June 2020— October 2020	Position: Quantum Software Development InternWhere: Xanadu Quantum Technologies		
	• Focused on development of Xanadu's quantum machine learning software library, PennyLane.		
	• Published tutorials on cutting-edge variational quantum algo- rithms implemented using PennyLane, such as the Variational Quantum Thermalizer, the Quantum Graph Neural Network, and the Quantum Approximate Optimization Algorithm (QAOA).		
	• Led the development effort to incorporate native QAOA func- tionality into PennyLane, in the pennylane.qaoa module.		
Other Experience September 2022— Present	Position: Research Student Where: University of Toronto		
	• Working with Prof. Nathan Wiebe on research related to ex- tensions of Quantum Signal Processing and Quantum Singular Value Transforms, and novel techniques for Hamiltonian simu- lation.		
July 2019— July 2019	Position: Summer StudentWhere: The Perimeter Institute for Theoretical Physics		
	• Participated in the International Summer School for Young Physicists at the Perimeter Institute.		
	• Took classes on basic concepts in modern physics (quantum mechanics, special relativity, etc.).		
	• Participated in a small seminar course on introductory Standard Model particle physics.		
	• Worked on a quantum information project with one of the IS-SYP mentors, Prof. Jamie Sikora, for several months after the program ended.		

October 2019—	Position: Qiskit Advocate	
Present	Where:	IBM Quantum

• Credited with writing two sections for the Qiskit textbook on introductory linear algebra for quantum computing, and the Variational Quantum Linear Solver algorithm.

Selected Preprints and Publications

- Jack Ceroni, Torin F Stetina, Maria Kieferova, Carlos Ortiz Marrero, Juan Miguel Arrazola, Nathan Wiebe "Generating Approximate Ground States of Molecules Using Quantum Machine Learning." arXiv preprint arXiv:2210.05489 (2022).
- Jack Ceroni, Alain Delgado, Soran Jahangiri, Juan Miguel Arrazola "Tailgating quantum circuits for high-order energy derivatives." arXiv preprint arXiv:2207.11274 (2022).
- Juan Miguel Arrazola, Soran Jahangiri, Alain Delgado, **Jack Ceroni**, Josh Izaac, Antal Száva, Utkarsh Azad et al. "Differentiable quantum computational chemistry with PennyLane." arXiv preprint arXiv:2111.09967 (2021).

Invited Talks

- North Carolina State University Quantum Workshop (January 2023). Talk title: Generating Approximate Ground States of Molecules Using Quantum Machine Learning.
- Quantum Technology and Application Consortium Journal Club (December 2022). Talk title: Generating Approximate Ground States of Molecules Using Quantum Machine Learning.

Honors and awards

- Weston Youth Innovation Award (2018)
- University of Toronto Scholars Award (2020)
- MITACS Accelerate Grant (2021, 2022)
- Haylon Chan Memorial Award (2022)
- University of Toronto Dean's List (2021, 2022, 2023)